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Abstract

A new approach to estimating motion of a highly maneuvering aircraft
target in an air-to-air tracking scenario is presented. An interactive
filter system is developed which provides an improved estimate of target
motion states by conditioning kinematic filter estimates upon target
aspect angle data. Pattern recognition techniques used with an electro-
optical tracker are presumed to provide this target aspect information.
A target orientation filter processes the aspect angle measurements by
statistically weighting measured aspect angles with the current best
estimate of target kinematics. The aerodynamic 1ift equation is used to
relate approximate angle of attack to target velocity and acceleration.
A novel statistical model for aircraft target normal acceleration is
also deQeloped to better represent unknown target accelerations. Simu-
lation results of realistic three-dimensional scenarios are presented to

evaluate the performance of the interactive filter system. i




I, Introduction

1.1 The Pointing, Tracking and State Estimation Problem

The subject of treatment in this dissertation is the general class
of estimation and control probiems known as "pointing and tracking," and
in particular pointing and tracking against a highly maneuvering aircraft
target. The ability to align some observer-based coordinate frame
relative to the line-of-sight (LOS) to a target (pointing) and to main-
tain that alignment as the target moves (tracking) depends, among other
things, on the observer's certainty of the target's motion behavior.

The degree of certainty in an observer's knowledge of target behavior is
a function of three variables: (1) believability of the observer's
sensor systems, (2) the degree of coupling between the parameters
measured and those about which knowledge is desired, and (3) the un-
certainty in the target's behavior between observations. The extreme
case of continuous observations of all the desired parameters with
perfect sensors clearly yields no uncertainty in current target behavior.
The more practical case is that of periodic measurements of some related
parameters with imperfect sensors.

It was this latter case which motivated the use of the mathematical
science of estimation theory. In this theory, statistical models are
proposed to account fof uncertainties in each of the three areas. The
product of this theory, the estimator, accepts observations of pertinent

parameters, relates these to the desired states of interest, accounts




for the 1ikely movement of states between these observations, and even

attempts to model the uncertainty in its own ability to estimate the
states of interest.

Given a particular sensor system with its known or assumed charac-
teristics and location, the questions raised in (1) and (2) above can
readily be resolved. One of the principal problems in pointing and
tracking, and addressed by many investigators, is that of (3) above,
improving accuracy and responsiveness of the estimator in a setting of
uncertain dynamics of the target.

A distinction can be made between targets with "known" dynamics
(except perhaps -for unknown parameters), and targets with "unknown"
dynamics. The usual choice of one of these two classes for the target
depends on the uncertainty in the equations describing the target's
state. An object moves in a medium in response to forces acting upon it.
In most practical problems, those forces are either reasonably well
understood and directly observable, or reasonably well understood but 1
not directly observable. These two cases are illustrated by the |
fo]1dwfng examples. A non-thrusting, earth-orbiting satellite has well-
modeled dynamics, even though there are many small unmodeled disturbing
forces acting on it, because the dominant forces are known. Once the
satellite orbit has been determined, prediction of future position is
limited primarily by the effects of these small perturbing forces. The
satellite is said to have "known" dynamics. As another example, an air-
craft maneuvers through the air controlled by movable surfaces on its
airfoils. The dynamic'behavior of the aircraft is well-modeled if these
airfoil surface positions are known, as on an instrumented aircraft.

There are still unmodeled uncertainties, but the dominant forces are

known. This cooperative aircraft has "known" dynamics. If, however,




the control surface positions are not observable, such as on an uncoope-

rative target, the mathematical equations which had modeled the dynamic
behavior would no longer be appropriate. The uncooperative aircraft
target would then be classified as having "unknown" dynamics even though
some parameters of its motion through the air are still observable.
Unknown dynamics can mean a large uncertainty in the nature of the -
dominant forces causing the dynamic behavior, but it usually means that
the dominant forces are not observable.

One of the most common techniques for modeling target behavior,
when dynamics are "unknown," is based upon the principle that kinematic
parameters, such as velocity and acceleration, are time-correlated. The
dynamic models discussed below treat the target as a point mass, thus
restricting the description of target motion to kinematics of the center
of hass. Fitts [15] assumes that the relative motion of the target under-

goes a random acceleration in each inertial axis, i.e.,

X;(t) = &(¢) tal, 2.3 (1-1)

and that g;(t) is time-correlated, i.e.,

Ei(t) = - gy (t) + Ef(t) (1-2)
where £5(t) is white noise, and

E [5;(t)E; (t+1)] = og;2e 0l (1-3)

Singer [46] reduces the set of differential equations (1-1) and
(1-2) to difference equations,

X4 (teaq) = AlaTawg) x5 (t) + Wylty ) ' A=)
tyy =t tAT,  1=1,2,3 (1-5)

[}




1 AT a;l,‘z (-1+ugAT+e"40AT)
AaT,ug) = [0 1 L (1-e7AT) (1-6)
(0]
and
teny 0
ity = ] Altyq-mauo) | O dr (1-7)
k £5(1)

This set of equations reduces, for small sampling intervals AT, to

0
Xs(ty 1) = A(AT)x, (t,) + [0 (1-8)
%% 245
H; (t4)
where
AT?
1 AT i
A(aT) =l0 1 AT (1-9)
0 o0 1

and . E [!4(tk)!4T(tk)] reduces to

[ B
Qi(t,) = [0 0o o (1-10)
0 0 2uwyATo,?

&

Singer asserts that a suitable probability density for each compo-

nent of total acceleration of a maneuvering target is as sketched below.
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Fig. 1-1. Singer Model For Target Acceleration Probability Density

The target is assumed to undergo no acceleration with probability Po,

undergo maximum acceleration with probability P in either direction,

max
and exhibit accelerations between limits -A and A according to the

max max
appropriate uniform distribution.

Perhaps a more realistic probability density function (pdf) for
maneuvering target acceleration is proposed by Kolibaba and Asher [29] as
sketched in Fig. 1-2. Unfortunately, neither this pdf shape nor the
one proposed by Singer is exploited in their filter implementations.
In<tead, only the variance is extracted and acceleration noise is model-
ed as a zero-mean, time-correlated, Gaussian process.

Other investigators have modeled target acceleration as time-corre-
lated random processes. Landau [31] models total target acceleration

as a first-order Markov process, while Pearson [41], in considering a

range/range rate estimator, allows that the component of total target
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Fig. 1-2. Kolibaba Model For Target Acceleration Probability Density
acceleration along the line-of-sight is adequately modeled as first-
order Gauss-Markov.

Consideration of relative target kinematics, with respect to a line-
of-sight coordinate frame, often leads to a direct estimation of range
and range rate with these states as observations [15] [41] [46]. The

following is one such formulation.

R =V, (1-11)

V.= w?R+ & -y (1-12)

é'Tr - -TiagTr + W (1-13)
where :

w? = szSe + szsd (1-14)




’ = attacker-to-target line-of-sight rates abcut the e and
s s,
d (cross-range, east and down) LOS coordinates
a; = total target acceleration along the LOS
r
a; = ownship acceleration along the LOS
r
Ty ™ correlation time of the random acceleration process
yr = white noise driving the acceleration random process

Note that LOS angle rate appears as a parameter in the kinematic equation
for the radial component of relative target velocity. This line-of-
sight angle rate can be provided from a separate angle filter whose
observations are azimuth and elevation pointing errors. This leads to a
beneficial, intéractive exchange of information, as the angle filter
needs estimates of range and range rate in its formulation. Note also
in the foregoing formulation that the LOS component of total target
acceleration is modeled as a first-order Markov process.

The usual formulations which model total target acceleration assume
the availability of ownship 2.celeration. An alternative approach was
proposed by Farrell, et al [14], in which incremental ownship INS veloc-

ity change since time tk, q,‘is modeled in the state dynamics by

t-t
x(t) = [o(t,t)] x, - [g( ")] (1-15)

where
R, relative position
V, relative velocity (1-16)

ars total target acceleration




= 2
Iz (t-ty) Igpg a(t-t))® 15,4

¢(t,tk) : I (t-tk) I

0 3x3 3x3 (1-17)
6x3
03x3 613x3
g and
& K s . =t *
? § = Exp { (t tk)/ta} 1. &t (1-18)

i This is a reasonable approach since pulse torque loop accelerometers
provide a pulse rate which is proportional to acceleration. Thus, q may

be determined by counting pulses. Observations for this filter are

g assumed to be range, azimuth and elevation angles.

The expectation that the target is maneuvering does not imply that
the mathematical description of the problem must necessarily model tar-
get acceleration in order to achieve satisfactory results in motion
. estimation. However, neglect of any attempt to model acceleration will
imply a preference for constant ve]ocity trajectories. For the formu-

lation in which position and velocity are estimated from range measure-

g ments only [19], the dynamics (one dimension only) are given by
()] [ T[] =
= + g(tk) (1-19)
X(ty4q) 0 1]ty L
2(ty) =1 o[x(t)] +  w(ty) (1-20)
X))

where T is the sampling interval. w(-) accounts for error created by
this truncated expansion which neglects acceleration and higher order

terms. Note that if the model uncertainty term, w, were zero, then




b3 (tk+1) = x(tk) for all k, which implies a constant velocity trajectory.

Clearly, uncertainty in target motion varies with the trajectory.
A target in straight and level flight is more predictable than one which
is rapidly changing its motion. An estimation algorithm is typically
tuned to provide acceptable performance over an ensemble of trajectories,
thus compromising between overdependence on the dynamic model which pro-
pagates the states between observations and overdependence on the raw
measurement data. A maneuvering target is generally attempting to change
its direction of travel, a premise which motivates the notion of adapt-
ing the filter in response to detected maneuvers. The adaptive esti-
mation problem becomes first, one of detecting and declaring the maneu-
ver, and second, one of adapting the filter parameters properly.

Adaptivity can be built into the tracker in several different ways.
McAulay and Denlinger (38 used statistical decision theory to derive an
optimal test for detecting the aircraft maneuver; a more practical sub-
optimal test is then deduced from the optimal test. When no maneuver
has been declared, a simpler filter, based on a constant-velocity model,
is used to track the aircraft. When a maneuver is detected, the tracker
is reinitialized using stored data, up-dated to the present time, and
then normal tracking is resumed as new data arrives. This is a form of
limited memory filtering.

Hampton and Cooke (191 construct an adaptive filter which alters a
scalar parameter in the filter algorithm, with the adjustment having
the effect of creating‘a fading memory in the algorithm itself.

Heller [20] uses a tracker with a random input acceleration covari-
ance matrix, Q, whose elements increase when a maneuver is declared.

When the target is traveling in a straight line, the elements of Q are




reduced. The detection of a maneuver is based on simultaneous satisfac-
tion of criteria requiring measurement error residuals to be sufficiently
large and a given number of errors to be of the same sign. This tech-
nique results in a time delay in declaring a maneuver, a disadvantage
it shares with many other maneuver detection schemes.

Demetry and Titus [0] achieve satisfactory adaptation by observing
build-up in the prediction difference term (measurement residual).
When two or more consecutive differences are of the same sign and outside
the limits of a 30 gate, the target ‘is declared to be maneuvering. To
recover from the bias introduced by such a maneuver, the raw ot servation
data must be weighted more heavily than would be the case if subsequent
filter gains were taken from the routine gain schedule, i.e., there is
a backsliding in the gain schedule. Reprocessing of the n most recent
measurements is then accomplished, where n is the number of differences
upon which the bias detector bases its maneuver decisions. The n most
recent measurements have been stored for this eventuality. The data is
reprocessed by basically going into the gain schedule at a point where
the relatively high gains of the early part of the schedulé are brought
to bear on the most recent measurements, those thought to be taken dur-
ing a target maneuver. The reprocessing continues until the n most
recent measurements are reprocessed, whereupon normal filtering and
maneuver detection processes are resumed. The filter gain, however, is

not restored to its premaneuver point in the schedule, but proceeds

sequentially from the packstep point.




1.2 A New Approach

The target behavior models discussed in the previous section were
based on kinematic considerations. Dynamics of flight were not a part
of these models because no observations were assumed to be available
which relate to target orientation. The physics of flight, however,
dictate a significant degree of coupling between an aircraft's orienta-
tion in the atmospheric medium and its consequent motion through it. The
coupling is so pronounced, in fact, that several general comments summa-
rize this relationship over most realistic flight regimes:

(1) The velocity of the aircraft is nearly along its longitudinal

axis,'the offset being angle of attack and sideslip.

(2) Dominant accelerations (1ift) are normal to the velocity vector
and nearly normal to the wings.

(3) Positive 1ift is more likely than negative 1ift due to both
pilot physiological factors and to structural loading design.

(4) Accelerations in the velocity direction (drag/thrust) are
generally smaller in magnitude and of shorter duration than
the 1ift (normal) accelerations.

(5) Angle of attack is nearly proportional to the magnitude of
normal acceleration, and inversely proportional to the square
of the speed.

With such a significant coupling between acceleration and orienta-
tion, a new approach tq estimating aircraft target states which exploits
this coupling appears reasonable. This new approach uses postulated
target orientation measurements together with standard measurements of
relative range and angles. An integrated filter is then designed to
estimate both target orientation and the target kinemétic states of

vector position, velocity and acceleration simultaneously. Finally, a more

1




realistic statistical model of the target's normal acceleration is devel-
oped and incorporated into the estimator.

Simulation studies conducted with this new estimator design show
that the response time for estimating the changing target accelerations
is greatly reduced from cases in which the orientation information is not
included. This not only provides a much more accurate state estimate
and predictive capability in highly dynamic engagements, but it also
provides much lower estimation residuals. This, in turn, would help
prevent breaking lock in dynamic tracking situations.

Although hardware mechanizations are not specifically considered
in the research.study, it is noted that the ability to obtain such tar-
get orientation measurements as presumed by the estimator is within
the projected state of the art. The advent of precision electro-
optical (E-0) trackers combined with the appropriate pattern recognition
(PR) methodologies (e.g., [121, [44]1, [48]) make the concept technically
feasible.

The air-to-air pointing, tracking, and state estimation problem is
one of a class of problems in which the object being obserQed has a
significant degree of coupling between its motion and its orientation.
Other objects with this characteristic include missiles and ships. Table
I compares the pertinent characteristics of the interactive air-to-air
estimator with those of a generic problem in this class. A comparison of
this kind underscores the basic nature of the problem, i.e., the require-
ment to estimate the kinematics of a moving object such that its motion
through the medium and its orientation in the medium are physically
coupled. The problem assumes also that the kinematic description can be

given a reasonable mathematical model and that ongoing measurements of

12




both motion and orientation of the object are available.

Table I. Comparison of Air-To-Air To Generic Problem

GENERIC

. A moving object whose motion

relates in some way to its
orientation in the medium
of travel.

. Some description of the

dynamics of motion.

. Ongoing measurements of

motion parameters.

. Ongoing measurements of

object orientation.

. Reference coordinate

system of known position
and orientation.

AIR-TO-AIR

1. A target aircraft whose

velocity is "nearly" along
its longitudinal axis and
whose acceleration is
“nearly" along its normal
axis.

. Differential equation which

models the kinematics and
dynamics of airplane flight.

. Periodic measurements of

radar range, range rate,
line-of-sight angle and
rate.

. Periodic two-dimensional

target images from E-0
sensor.

. Stabilized platform onboard

pursuit aircraft.
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1.3 Organization of Remaining Chapters

This introduction has motivated the potential for interaction
between kinematic and aspect state estimation. With this motivation
established, the remainder of the dissertation develops a particular
formulation for an interactive filter system and evaluates its perfor-
mance over a variety of test conditions.

Chapter II develops the mathematical basis for both the kinematic
and aspect Kalman filters. It also presents a computational algorithm

to implement the interactive filter on a computer. A performance

analysis plan is outlined in Chapter III which structures the areas and
methods for inveﬁtigatingintrinsicperformance of the interactive filter,
and performance as it compares to that of a typical comparative filter
system which uses radar measurements only. The results of this per-

formance analysis are presented and discussed in Chapter IV. Chapter

V considers several techniques for reducing the computational burden in
implementing the interactive filter system on an operational computer.
Included are the topics of parallel processing, linearization, scalar
processing of measurements and quasi-static filter approxim&tion. Con-
clusions are drawn in Chapter VI on the success and shortcomings of this
interactive filter system in modeling the behavior of the chosen class
of maneuvering targets. Finally, recommendations for future research
are also described in Chapter VI. Detailed graphical results are placed
in Appendix A for centralization and to make the text more readable.

The remaining four appendices are included to elaborate upon pertinent,

specific areas which, for the sake of brevity and continuity, were not

included in the text.




II. Interactive Target State Estimator

2.1 System Description

i

! The target state estimator developed and evaluated in this disser-
tation is based upon a model which couples the separate concepts of

target motion and target orientation in a unique manner. Only targets

with some degreg of motion/orientation interaction can be so modeled.

Clearly, a uniform non-rotating sphere in motion through a medium lacks

this interaction entirely since its motion is independent of its orien-

tation and vice versa. Other classes of potential targets such as air-

craft, missiles and ships exhibit this interaction to a significant

degree.

One of the important issues in formulating a pointing and tracking
problem is the choice of a mathematical model for target behavior. In
one particular class of targéts, that of high-speed fighter aircraft,
the target is generally highly dynamic and has considerable latitude in
its orientation and subsequent motion. Also, target kinematics and
orientation are only indirectly available through observations from the
tracking aircraft, sometimes designated as "attacker" or "ownship". The

description of kinematic uncertainties becomes an important element in

the process of modeling target behavior.
The high-speed fighter aircraft will represent the class of targets

considered for the approach subsequently developed. A brief analysis

of its dynamic characteristics follows. Fig. 2-1 shows the instantaneous
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roll (x), pitch (y) and yaw (z) axes of an aircraft. Roll, pitch and-

yaw are the angular rotations about the respective axes, positive in the
right-hand sense. The direction of motion is along the velocity vector
which is offset from the roll, or longitudinal, axis by the aircraft

angle of attack, a, (subscript "a" for attacker, "t" for target).

Fig. 2-1. Aircraft Body Axes

Except for airspeed changes and uncoordinated turns [in which the lateral,

or y, component of velocity is non-zero; may be intentional, as with direct
side force application for control configured vehicles (CCVs)], the direc-
tion of load acceleration generally lies normal to the velocity vector in

the plane of the velocity vector and the instantaneous yaw axis. (Load
acceleration, a vector quantity useful in describing motion of bodies trav-
eling in a gravity force field, is acceleration minus the gravity vector, and is
sometimes designated as specific force.) The mechanical sfructure of

the aircraft, as well as the human pilot, is capable of undergoing
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considerably greater acce]eratibn along the negative yaw axis than

along the positive. The modern F-15 jet fighter, for example, has
acceleration limits of 9g in the negative yaw direction (up) but only
3g in the positive yaw direction (down)[50]. Any acceleration model
which attempts to structure a realistic probability envelope about the
target should reflect this asymmetric behavior of normal load acceler-
ation.

The proposed interactive target state estimator is shown in Fig.
2-2. The sensor subsystem provides measured motion data to the kine-

matic state estimator. This data is representative of modern airborne

radar systems--range, range rate, azimuth and elevation angles and angle

rates. Angle rate measurements are not essential but can be used if
available. If not available directly, as from rate gyros, angular
rate data is sometimes achieved by pre-filtering angle measurements.
The sensor subsystem also provides two-dimensional imagery data to the
pattern recognition algorithm. The imagery data is of the target as
observed from the attacker and hence is in a plane perpendicular to
the target line-of-sight, designated as the image plane. The function

of the pattern recognition algorithm is to deduce from the two-dimen-

sional imagery, the orientation of the three-dimensional target relative

to a coordinate system with an axis perpendicular to the image plane.
The target orientation is specified as Euler aspect angles relative to
the image plane coordinate system. By knowing the orientation of the
image plane frame relative to the inertial frame, these angles can be
transformed to Euler éng]es relative to the inertial frame. They are
then filtered to reduce sensor and process noise. Thus the target

orientation becomes known relative to the inertial frame.
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Direction of normal load acceleration is extracted from this best

estimate of target orientation and is provided to the kinematic filter.
The kinematic filter uses this normal load acceleration direction to !
enhance its estimate of target position, velocity and acceleration
relative to the attacker. Ownship velocity and acceleration are added
to these relative estimates to obtain estimates of total target kine-
matics. Approximate target angle of attack is computed from total
target velocity and acceleration (to be discussed later). This approx-
imate angle of attack is combined with target velocity and acceleration
information to form a measure of target orientation as derived from
kinematics. This aspect data is then provided as a measurement to
the aspect angle filter as indicated by the feedback path in Fig. 2-2.
This interactive exchange of information, as will be demonstrated in
this djssertation, provides an estimate of target kinematics that
exceeds the performance capabilities of filters which do not exploit
orientation information. ; ' :

The target state estimator computes in the inertially stabilized
coordinate frame in the attacker aircraft. This frame is assumed to
be aligned with an earth-fixed frame which, for the short duration of
the encounter, is considered to be inertial.

The target tracker is assumed to be inertially stabilized. Angle

and angle rate measurements of the target position are referenced

directly to the inertially stabilized frame, thereby eliminating
additional intermediate transformations involving the attacker body
reference frames. This simplifying assumption lessens the computation-
al burden for the simulation, but does not degrade the demonstration

of feasibility for the filter system. The derivation of pertinent




coordinate transformations is in Appendix B. The detailed mathematical

model is formulated in the following section.

2.2 Mathematical Formulation of Target Kinematic Model

2.2.1 Dynamic State Equations. This section derives the equations A

which model the target kinematics. The underbar (_) indicates a random
variable or random process while the overbar () indicates a vector
quantity. The subscripts t, a and I refer respectively to target,
attacker and inertial systems. Thus, "t/a" denotes a relative parameter
of the target with respect to the attacker. Superscripts refer to the

coordinate system in which the vector is expressed. The inertial xl,

yI, 2! axes are north (n), east (e), and down (d), respectively.

The velocity of the target relative to the attacker is modeled
by setting the time rate of change of target position relative to the
attacker equal to relative velocityg Expressed in inertial coordinates,

this is

* ¢ s
Pera = Yy (2-1) 1

The following equation for relative acceleration uses knowledge of

ownship acceleration. It also allows the dominant normal acceleration
term to be modeled separately from the remaining lateral and tangential
accelerations. The advantage this feature holds over the usual first-
order Markov model will be pointed out during the remaining discussion.

Target relative acceleration is modeled as

=)

I . g
e " R Y9 v B -Vn * X (2-2)
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where

= component of total load acceleration which is along the

!

normal direction, i.e., normal to the velocity vector in
the plane of the velocity vector and the instantaneous yaw
axis. Modeling of the magnitude of g& (léhl or gN) will
be discussed later in this section.

gravity vector assumed to be in the +zI direction (sometimes

Q|
"

called "gravitation", i.e., force due only to mass attrac-
tion).

da = correlated noise process which models the remaining
(1ateral and tangential) acceleration of the target. The
lateral and tangential acceleration (i.e., having no com-
ponent along the normal load acceleration direction) will

be termed "non-normal" acceleration.

<
/]

an ® attacker total acceleration which is available from an
inertial navigation system (INS). INS errors are assumed
negligible after compensation is done elsewhere. The

inclusion of the white noise term'ﬂac could, of course,

c
account for a simple model of INS errors. More elaborate
INS error models could be added to this model if deemed
" necessary.
Eacc= zero-mean Gaussian white noise process to account for un-
correlated errors in 8a. It also accounts for modeling
errors in both direction and magnitude of Eh. and any other
inadequacies of the model for relative acceleration.
The gravity vector g is necessary in this formulation to offset

the apparent acceleration component introduced from the gravity force
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field. A pilot would sense the same apparent acceleration cues in
straight and level flight (no acceleration) in a one-g gravity force
field as an actual one-g normal acceleration in a no-gravity environ-
ment (e.g., in space travel). This concept is also illustrated by con-
sidering an aircraft in a constant altitude, banked turn. In this type
maneuver, there are horizontal velocity changes but there is no accele-
ration in the vertical direction. Figure 2-3 illustrates that with con-
stant airspeed in a coordinated turn, the pilot senses a normal load

acceleration related to the bank angle by the equation

¥ lgl

layl = osp | (2-3)
and that

-+ 3 (2-4)

Fig. 2-3. Aircraft Load Acceleration in Level Turn
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The predominant target acceleration is the normal term, so non-

normal acceleration will be generally small. Modeled as a random pro-
cess, non-normal acceleration will likely be symmetrically distributed
since it models a small perturbation from the predominant normal accele-
ration term. It will also likely exhibit the time-correlation property
characteristic of kinematic parameters of moving bodies. Hence, a

suitable model for non-normal acceleration is the first-order Gauss-

Markov process,

—1

1 =1 =1 g
da = -—3%a + W (2-5)
Tsa —Sa
where
Tsa is the process time constant, assumed the same in all three

inertial directions, and
Eéa is a zero-mean Gaussian white noise process of strength qI,
i.e., no apriori knowledge is assumed of correlation among
inertial components of non-normal acceleration.
The choice of values for'tsa and strength for the noise process
Eﬁa will be decided during the tuning process. Initial estimates of
these parameters should consider the dynamics of aircraft flight.
High-speed maneuvering aircraft generally hold a particular maneuvering
configuration for no more than several seconds but can alter their atti-
tude significantly in less than a second. A time constant of one second
is not an unreasonablg estimate at which to begin the tuning process.
Non-normal acceleration includes air-speed changes and lateral accele-
ration due to wind gusts and uncoordinated turns. It is reasonable to
expect these acceleration contributions to be small since the predomi-

nant acceleration is normal to the velocity vector. Changes in
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non-normal acceleration of one-half g or more during one second are not
likely to occur so tuning will begin at a noise strength corresponding
to this value.

Continuing with the discussion of Eq (2-2), the normal load
acceleration is modeled as a vector whose direction is provided by the
aspect angle filter and whose magnitude is modeled as an asymmetrically
distributed, time-correlated random process. Asymmetry of the probabil-
ity density function (pdf) for normal load acceleration magnitude can
be synthesized by forming 3y as a deterministic, non-linear function of
an intermediate time-correlated zero-mean Gaussian random process. In
this manner, the intermediate Gaussian random process can be propagated
directly as a first-order Gauss-Markov process. This technique allows
ay to be propagated indirectly and thus maintain a specified asymmetri-
cal pdf throughout the estimation process. Besides the utility of
allowing propagation of the asymmetric pdf, the particular non-linear
function chosen allows synthesizing a hard 1imit in acceleration magni-
tude, a feature not possible with the simpler Gauss-Markov model. This
non-linear model is discussed below.

The magnitude of load acceleration in the normal direction can be
modeled by
= o+ ge's (2-6)

éﬂ!

where

a, B, y are constant for a particular class or type of target air-

craft,

& is a zero-mean Gaussian colored noise process with unit
variance.

ay denotes the magnitude of the bidirectional normal load

acceleration vector including the sign, i.e., a negative

24
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realization for a+Be'S indicates a load acceleration along

the negative normal direction. The first order pdf for

ay is derived in Appendix C and is given by

Y g9

Pa (aN) = (2’7)
£ 2y
g

-1 ay-a %) ay-a
[vZ7 v |ay-al] expg 1] % e

<0

Parameter o tends to represent a maximum acceleration limit while both
B and y affect peakedness. The pdf is sketched in Fig. 2-4 for partic-
ular values of a, Band y. This particular choice of target parameters
produces a first-order pdf of normal load acceleration magnitude which
is typical of modern piloted aircraft in evasive maneuvers. In this
typical case, a hard limit occurs between 7 and 8 g's, typical maneuvers
are at 3-6 g's, and there is an occasional negative-g maneuver of small
magnitude. In an operational setting, target parameters a, 8 and Yy
could be selected at the initiation of the engagement to match the known
characteristics of the particular target. If the target type were not
known, a set of parameters for a generic fighter would have been selected
before beginning the engagement. Some pdf plots using other values of
these target parameters are shown later in Chapter III, Performance
Analysis and Computer Simulation.

Finally, the intermediate random process, ¢ , from Eq (2-6), is

modeled as first-order Gauss-Markov (State 10),

Ime

S W *
= - Te‘e_-l-ﬂe (28)

Then not only can ay be propagated indirectly through € and maintain
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its asymmetrical pdf, but because of the exponential correlation for
€ 3y will also have exponential correlation (biased). In this model,
Eﬁ is a zero-mean Gaussian white noise process. Also, since € is to
have unit variance, the variance of ye is set to the value 2/t (See
Appendix C.)

With the dummy variable e so modeled, the autocorrelation of a,

has the form
REN(T) = Cy +C, exp (Cy exp (-|T|/%)] (2-9)
where
€y =a®+ ZaBeyyz
C, = g2eY’ (2-10)
Cy = y?

If C3 is small (e.g., vy< 0.5), this may be approximated by

REN(I): Cy + Cg exp (-|T|/T€) (2-11)
where
=6 t 6
(2-12)
C5 = CxC3

The normal load acceleration component, 1ike the lateral and tangential
acceleration components, exhibits a near-exponential correlation as
would be the case if it had been modeled as simply a Gauss-Markov pro-
cess. Current acceleration models display this characteristic but
symmetry of the pdf is generally their shortcoming. Also note from Eq

(211) that t_ is the time constant governing the correlation of ay-

€
Finally, note that the bias term C4 results from the asymmetry of the

pdf for-é&, and corresponds to the square of the mean of ay which is
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given by

2
M, =+ e’ /2 (2-13)
3N

Additional details of the autocorrelation for ay are contained in

Appendix C.
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Fig. 2-4. First Order Probability Density Function For
Normal Load Acceleration During Evasive Maneuver;
a =8, B = -4, y = 0.5
An alternative approach would be to model 3y s a nonzero-mean
first-order Gauss-Markov process. Some details of this alternative
approach are discussed in Chapter V, although no comparison of performance
has been made with the above technique.
Eqs (2-1), (2-2), (2-5) and (2-8) form the ten-state non-linear
propagation model. An extended Kalman filter algorithm is chosen over
a higher order non-linear filter for ease in implementation. The

equations are summarized below for future reference.

x = F(X,0) + GH (2-14)
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where

sa, 10

z " [P-t/an Bt/a, Bt/a, lt/al,l l/’c/ae !t/ad o, 8 82 (2-15)

X
Y 10)(1

9((!+Be N)n + X7 « U-‘

10

g(a+ee Mo + xg = u,
10

glatge T)(1\ )4+ xg + g - uy

F(x,u) = et

and
- [‘}all ‘}/1 ‘;/1 ]T (2-17)
n e 5 d

g = magnitude of acce]gration due to gravity which is assumed constant at
32.17 ft/sec. u consists of the north, east and down components of total
attacker acceleration, assumed available with negligible uncertainty.

The target aspect is changing as the kinematics are changing, i.e.,
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the target aircraft is changing its orientation in order to direct the
predominant normal acceleration vector and thus effect a trajectory which
will evade the attacker. However, the time constant for aspect changes

is generally significantly larger than the sampling interval. For this

T R AP e~

ﬂ reason, the normal load acceleration unit vector components (IN)n. (lN)e,

| and (1N)d are considered deterministic functions of time, and approximated
as constant over a sampling interval. A possible extension to this re-
search would be to investigate performance using a piece-wise affine,

4 rather than piece-wise constant, unit vector determination. This might

be particularly beneficial if the pattern recognition algorithm is capable
of determining angular rates, an assumption not made for the generic
algorithm supposed in this research.

The Gaussian, zero-mean white noise components are combined into

vector form as

TEi T (2-18)
Bom [,y Yy ey Uy iy ]
G is given by
0 (3x7) , ,
§ =] comanna (2-19)
I (7x7)
and
e [Ht) F(t+)] = Qstx) (2-20)

Stationarity of model noise is assumed here for simplicity. Q is
assumed diagonal. Also, no pseudonoise is added to position derivative
equations. This could be added if additional fine-tuning of the filter

were desired. Q component values are tabulated in Appendix E.
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2.2.2 Measurement Equations.

The attacking aircraft is assumed to
be equipped with a modern radar system providing the following measure-

ments (Refer to Figure 2-5): range, r (distance to target); range rate,

r (time rate of change of range); azimuth angle, n (measured from north
in the horizontal plane); elevation angle, £ (measured up from the

horizontal plane); azimuth angle rate, n ; and elevation angle rate, 3 !

; Target
r
Attacker 1 &
North
n
X3
X2
East
Down

Fig. 2-5. Measurement Geometry

Each measurement is assumed noisy and is modeled as being corrupted with

zero-mean Gaussian white noise, v. This choice for a radar noise model

is often made and is reasonably valid for many applications. However, a

possible extension of this research would be to define a more realistic

(i.e., more complex) radar noise model and compare filter performance
using the two different models. The measurements can be related to the
states defined in Eq (2-15) as follows

zZ = h(x) +¥ (2-21)
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Stationarity of measurement noise is assumed for simplicity. R is also
assumed diagonal. More realistic models may be added if dictated by a

particular implementation. R component values are tabulated in Appendix E.

2.3 Mathematical Formulation of Target Aspect Model

The attacker is provided with an electro-optical (E-0) imaging sys-
tem which tracks the target during its maneuvers. System performance
parameters (e.g., tracker stability, pointing accuracy, resolution, spec-

tral response) must be of sufficient quality to allow the imagery data to




be processed into orientation information. This processing is accomplished
in a unit designated as the pattern recognition (PR) algorithm. The PR
algorithm “recognizes" that the image pattern represents a particular
target orientation by performing prescribed algorithmic computations on
the image data.

Several pattern recognition techniques are applicable to this type
of problem. A theme underlying many of the applicable schemes is that
much of the significant information required for recogrnition is contained
in the edges, i.e., in the boundary curve of an isolated shape. A re-
view of feature extraction techniques which are based on edges and contours
is included in a survey by Levine [ 33] . As pointed out by Richard and
Hermami [44], the advantage of using boundary curve descriptions is that
features may be chosen which are independent of téanslation, rotation and
the size of similar shapes. These authors apply a particular boundary
curve classification technique to aircraft aspect determination. In this
technique, a one-dimensional Fourier expansion of the complex valued
boundary curve Z(t) is made. This Z(t) is the set of complex numbers with
parametric representation

z(t) = (x(t),y(t)), tero, 11, z(0) = z(1) (2-23)

where x and y are continuous real valued functions representing the abscis-
sa and ordinate values on the boundary of the two-dimensional image (ref-
erenced to some arbitrary fixed frame, e.g., centered at the image center
of mass). The parameter t is proportional to arc length around the
boundary and speed |dZ/dt| is constant. The complex valued function Z for
t e(-»,0) is considered the periodic extension of Z for t €¢[0,1]. The

periodic function Z(t) is represented by its Fourier series

Z(t) = X ; Cy €xp (j2mkt) ' (2-24)




Lugseoat =

where

1
¢ = -[OZ(t) exp (-j2mkt)dt (2-25)

The Fourier series of a given contour is then filtered by an ideal low
pass filter and is normalized. A finite set of Fourier descriptors
{cki* » k=0, 1, 2, . . . , #m}, representing the truncated series,
is stored for each prototype Zi* sy i=1,2, . . ., P. An unknown
contour Z with coefficients {ck} is then classified in that prototype
class i for which a particular distance metric is minimized. The
authors succeséfu]ly applied this technique to recognition not only of
aircraft type (among four, including F-4 Phantom, Mirage IIIC, MIG 21
and F-105) but also of aircraft yaw, pitch and roll relative to the
image plane. To simulate the effect of detector noise in the authors'
computer simulation, zero-mean white Gaussian noise was added to each
coordinate of each of the 512 points making up the boundary. Time-
correlated noise models were suggested for further research.

Another technique, which has been applied to aircraft recognition,
is also based upon using outlines or silhouettes for principal identity
clues. Sklansky and Davison [48] compute the density of slopes of the
edge of the silhouette. Slope density of a silhouette is 1/40 times
the fraction of the silhouette's perimeter whose slopes lie in the
half-open interval [0,6+A68), where 6 varies from 0 to 2m. Conceptually,
a polygon is constructed which consists of a sequence of vectors, each
no longer than § connected head to tail, the tail and head of each
vector lying on the boundary of the silhouette. 8, denotes the angle of
the %M vector relative to the horizontal axis, and n denotes the number

of elements of the set ,(0<6,<0+A0}. Slope density, f(e), is defined as
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f(e) = 1i (2-26)
-
§+0

where § and A6 go to zero in such a manner that nS is of the order of
28. f(8) is periodic, with period of 2r. f(6) is independent of silhouette
translation, and is also independent of dilations and contractions if

norma]ized‘so that

2n
f(e)de =1 (2-27)
0
Rotation of the silhouette results in translation of f(g). Feature
space for this technique consists of the amplitudes of lower-order
Fourier harmonics of the silhouette's slope density, and a nearest-neighbor
decision rule is used for classifying a given silhouette into a particular
prototype class. The authors' experiments do not include the addition
of corrupting noise to simulate detector uncertainties. Also, only roll
angle aspects were analyzed in this study, and no follow-on research has
been accomplished to extend this technique to a study of all aspects
81.
Another method, using the theory of two-dimensional image moments,

was applied to automatic aircraft identification and aspect determination

by Dudani [ 111 [ 121 . In this technique, two-dimensional (p+q)th order
moments, defined as
o bz 2Pt +q=0,1,2 (2-28)
Pq N1=1 .i.yi s P q ’ ) y e

are applied to coordinates (xi, yi) of the N points equally distributed
along the boundary of a given pattern. Central moments are then defined

in terms of these ordinary moments. Six non-linear expressions are then
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formed from these central moments--two involving second-order moments
and four involving third-order moments. One of these six {(which happens
to be the square of radius of gyration) is used to normalize the other
five, resulting in five scalar functions which characterize a given
image. These five functions are raised to different powers. The result-
ing five elements then form the characterizing vector in five-dimensional
feature space. Again, a nearest-neighbor decision rule is used to select
the prototype class into which to place a given sample image.

Regardless of the recognition technique implemented, the output
required from the pattern recognition algorithm is target orientation.
Target orientation is referenced to the image plane which is perpendic-

ular to the line of sight from the attacker to the target. By assumption,

T axis is to the right in the horizontal plane, the y1

i

the image plane x
axis is up and the z' axis is out of the image plane toward the attacker,

as illustrated in Fig. 2-6.

to attacker

Fig. 2-6. Image Plane Orientation
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An alternative image plane frame definition is discussed later in this
section which is better for avoiding angular indeterminacy in the typical
tail chase maneuver. The imaging tracker is assumed to be inertially

stabilized so that image right and up correspond to positive azimuth and :

elevation, respectively. The typical manner for specifying image aspect

is through Euler angles which give orientation of the target with respect

to the image plane. A zero value of image yaw, pitch and roll occurs when
the target aircraft frame is aligned with the image frame, i.e., the tar-
get nose is to the right, the right wing is up and the aircraft under-
side is the image view. The usual order for Euler rotations is assumed--
yaw, then pitch and then roll. Image yaw is rotation about the z axis
from the reference image frame. Image pitch is rotation about the newly
formed lateral- or intermediate y axis. Image roll is rotation about

the newly formed longitudinal- or x axis.

Indeterminate points can occur at image pitch angles of #90 degrees.

The following example illustrates the problem. Zero yaw, 90° pitch and
90° roll is the same orientation as -90° yaw, 90° pitch and zero roll.
The solution to this non-uniqueness problem is motivated by considering
the dynamics of flight. Rolling motion about the longitudinal axis is
considerably easier to effect than are heading changes. The target pilot
may attempt several rolling maneuvers without appreciably changing rel-
ative heading. It is better to track roll, in this case, than to assume
zero roll and track a contrived heading (yaw). Hence, for the case of

+90° pitch, yaw is takgn to be zero so that roll then uniquely defines

the orientation.

The assumption of zero yaw at +90° of pitch has the apparent dis-
advantage of causing yaw to drop to zero (from some value between - 180°

and +180° ) when image pitch of £90° occurs. Yaw would then switch
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instantaneously from zero to a (possibly different) value after the +90°
pitch situation had past. This situation, however, is not likely to
occur. Consider the +90° cases separately.

The -90° image pitch corresponds to a head-on pass or to the target
chasing the attacker. The second of these possibilities is not considered
here since, if tracker lock-on should be lost, sufficient time for
reacquisition would occur in converting from a defensive to an offensive
position. The head-on pass does occur in air-to-air combat although
much less frequently than the tail-chase. In the head-on pass, each air-
craft directs its velocity vector generally toward the other. Since
little normal aéceleration is required to accomplish this, the angle of
attack will be small. Hence, the longitudinal axes of the aircraft can
be nearly aligned. The engagement will 1ikely be terminated abruptly
prior to crossing as one (or both) of the two aircraft breaks off to seek
a tail-chase (offensive) position. The advantage of roll attitude tracking
prior to break-off is more important in that it provides a direction of
probable acceleration after the break. The disadvantage of (possibly)
not rapidly reacquiring image yaw after the -90° pitch sifuation has
occurred, therefore, is minimized since little or no weapon firing
opportunities will occur during this scenario after the break-off.

The air combat maneuver which is more 1ikely to occur is the tail-
chase in which the +90° 1image pitch situation would apparently occur.
Actually, an image pitch of +90° seldom occurs in the tail-chase because
of two important engagement parameters, angle-off and angle-of-attack.
Angle-off is the (generally acute) angle from the negative target velocity
vector to the attacker 1ine-of-sight. The typical engagement is described

as follows. The target is aware of its defensive role and is pulling




7

R R e~ —

several g's in order to evade the attacker. The angle of attack, which
is proportional to load acceleration magnitude, will be relatively large
(typically 15-25 degrees). The attacker is behind the target a half mile
to a mile. The attacker orients its wings and hence its predominant
normal acceleration vector so as to stay in the target's turning plane.
The attacker attempts to direct its velocity vector toward the target
(pure pursuit) or slightly ahead of the target (lead pursuit) in order to
sustain the engagement. Fig. 2-7 illustrates the typical tail-chase
maneuver as seen in the turning plane for several angles-off. The turn-
ing plane need not be horizontal. Note that the effects of angle-off
and ang]e-of—attéck combine to move the target longitudinal axis a signi-
ficant angular displacement from the line-of-sight.

It was reasoned above that indeterminate points at +90° image pitch
occur seldomly, and with short duration in typical air combat engagements.
However, if implementation experience determines this to be a problem
area, the following alternative image orientation provides even less
opportunity for the indeterminate point to occur. Redefine zero image
yaw, pitch and roll to be target nose along line-of-sight, }ight wing to
the right and aircraft underside down, respectively. The image frame
is shown in Fig. 2-8. This definition of aspect has the advantage of
placing the longitudinal axis of the target at right angles to the line-
of-sight at the troublesome +90° image pitch. This particular configu-
ration will not occur in a pursuit mode because of the required angle-
off. It would occur only for paralleling trajectories or for a short
duration during side-shot engagements (target crossing attacker's path

within firing range).

The foregoing discussion relates to deducing target aspect angles
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relative to the image plane. Target aspect is then converted to orien-

tation relative to the inertial frame through a transformation which

involves tracker azimuth and elevation angles.

vl S e

Fig. 2-8. Alternative Image Plane Orientation

The details of the transformation are included in Appendix B. The

recognition process and subsequent transformation described earlier in

this section result in a conversion of target imagery data into a measure
of target aircraft orientation relative to inertial space. The Euler
angles deduced in this manner are tracked with the filter algorithm

described in the next two sections. Direction cosines or quaternions may

be used as alternative expressions of target orientation.

2.3.1 Dynamic State Equations. The following first-order equation models

the behavior of the inertially referenced target aspect between measurements

updates.

X =F + 68 ‘ (2-29)

40

- v T — PSS,




T TSI e g W

where

X = [Woeoyo el (2-30)

Fon r_O_j_I_g,,s 3 (2-31)
[0 0
[0

¢ =|p-- (2-32)
L “3x3

- T

w = [y, vy w,) (2-33)

E [@(t)a (t+1)1 = Q, 8(x)

¥, 6, ¢ represent yaw, pitch and roll of the target aircraft relative to

the inertial frame, and
w is a zero-mean Gaussian white noise process.
This dynamic equation models target Euler angle rates as Brownian motion.
This model was chosen because it is simple. Plant noise is assumed
stationary, although, depending on the characteristics of phe pattern

recognition algorithm and the electro-optical sensor, adaptively setting

Q, might be feasible.

2.3.2 Measurement Equations. There are two sources of target

aspect measurement data for the aspect filter. The primary source is
the pattern recognition algorithm which converts the two-dimensional
imagery data to target aspect Euler angles. In addition, target aspect
can be deduced from ta§get kinematic estimates which are available from
the kinematic filter. This additional measure of target aspect can be

accomplished in two different ways'as outlined below. - If a pattern

recognition system is not available, kinematically derived target aspect
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angles only can be provided to the aspect filter as measurements. This

case is considered in the chapter on performance analyses.

2.3.2.1 Target Velocity Used to Define Roll Axis. A method which

can be used to deduce target aspect from kinematics, ignores direction
of acceleration and aircraft angle of attack by assuming that the
velocity vector is along the longitudinal, or roll, axis of the target
aircraft. By making this assumption, yaw and pitch angles are uniquely
established. This is true because of the order of rotation of the Euler
angles--first yaw, then pitch and finally roll. A measure of approximate
yaw is available as the angle from the inertial X! (north) axis to the
projection onto the xI-yI (north-east) plane of the velocity vector. For

brevity in the following discussion, let vl

oW T
t/1 = V= [VxVsz] Thus

v
Y = arctan(%) (2-34)

x
or to avoid computational problems near Vx =0,

v

¥ = arccos <7_T—Tf_ﬁ_> sign (Vy) (2-35)
L

where arccos denotes the principal value of the inverse cosine function.
If Vx and vy are both zero, wk is defined to be zero. A measure of
approximate pitch is the angle from the xI-yI plane up to the velocity

vector. Thus

-vz'
8, = arcsin (’TT‘) (2-36)

where




. STT T "
v Vx +Vy +Vz (2-37)

For modeling simplicity, the measurements available to the aspect
estimator can be modeled as corrupted with zero-mean Gaussian white

noise and related to the states by the equation

Z =HY + 3 (2-38)
where
[T 08 5 o @
O T e
H = 0 0 1 0 0 o0 (2-39)
1 0 ¢ 0 0 ©
¢ 1 @ 0 % oJ

since a measure of yaw, pitch and roll are available from the pattern

recognition algorithm and an additional measure of yaw and pitch is

available using Eqs (2-35) and (2-36).

Also,
= =T e
EDo(t, ) (tj)J = RSy (2-40)

Measurement noise is assumed stationary and Ra is assumed diagonal.

2.3.2.2 Target Aspect Using Angle of Attack. The method outlined

in the previous section ignored angle of attack by assuming the velccity

vector was along the longitudinal aircraft axis. The method developed

below provides target attitude from




a) total target velocity in inertial coordinates,

b) total target acceleration in inertial coordinates, and

c) the relationship between angle of attack, normal load acceleration

magnitude and airspeed:

nW = kazCL (at-at )S (2-41)
6] 0

where

n = load factor, i.e., magnitude of normal load acceleration
expressed in g's
W = weight (1bs; assume sea level gravity)
p = air dehsity (slugs/ft?)
V = airspeed (ft/sec)
C_ = coefficient of 1ift fora(dimensionless)
a, = target angle of attack (radians)
ato = target angle of attack for zero 1ift (radians)
S = effective airfoil surface area (ft2)
The method is outlined in the following procedure.
a) Find load acceleration normal to the velocity vector.
b) Form target velocity (v) frame:

x* - along velocity vector

2 along negative normal acceleration direction
yv - forms a right-hand orthogonal set with x' and Z'.
c) Rotate target velocity frame about yv axis by angle of attack,
to form body frame.

d) Extract Euler angles--yaw, pitch and roll--from inertial-to-body

transformation.

The details of this procedure can be found in Appendix D. The result is
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shown below.

V0, Ay, S, V0%, Ay S%
arctan [( yv L Z ty/( xv & 53

¥ = » (2-42)
8, = arcsin (Vz:at + aN::at) (2-43)
¢ = arctan [(VXaN{;:yaNx)/(vzjat - aN:;at)J (2-44)
where Eﬂ £ 3& = [aN ay ay ]T is the target normal load acceleration,

t/1 ) el L
and(:tis the target angle of attack, related to load factor and airspeed

through the aerodynamic 1ift equation. Sut and cut are sin (at) and cos

(at), respectively. The measurement equation is again Eq (2-38) with

H el | SR 06X3 (2-45)

One potential source of uncertainty in this formulation is the angle
of attack versus 1ift for certain enemy aircraft (i.e., coefficient of
1ift and effective wing surface area). Although certain performance
data are not published for some aircraft (such as maximum available
thrust), most countries do not attempt to control the dissemination of
unclassified data, of which this information is certainly a part [50].

2.4 Interactive Filter Formulation

The interactive estimator shown in Fig. 2-2 will be discussed in
detail in this section, The primary purpose of the interaction between
the motion filter and the target aspect filter is to improve the motion
state estimates and allow a better prediction of target position into

the future. Another motivation for such interaction ﬁight be to improve
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the estimation of target aspect. This could be useful for applications
such as laser fire control, in which a precise estimate of orientation is
crucial to maintaining the light beam on a small portion of the aircraft
target. The dynamic model, used for motion state propagation between
measurement updates, provides a good description of the acceleration
uncertainties of an aircraft in motion (performing maneuvers typical of
a fighter in an evasive situation.) This model depends, though, on some
knowledge of the direction of target acceleration. This approximate
acceleration direction is provided from the aspect filter as explained
in a previous section. Measurement updates of both motion data and
target attitude data are being periodically provided to the interactive
filter by the sensor subsystem. With this overview, a more detailed

examination of the computational logic will be made.

2.4.1 Computer Logic Structure. A top level flow chart of the inter-

active filter is shown in Fig. 2-9. The simulation, or test, version of
the system is presented here, i.e., perfect trajectory values are corrupted
with noise to simulate the presence of noise on actual radar and
attitude data. The operational, or on-line version of the filter would
a) delete blocks 6, 9, 10 and 16,
b) cycle back to (B) after the () flag following block 15, and
c) replace "actual" with "measured" in block 8.
The significant contents of each block will be discussed below.
Block 1. Initialization
Initialization 1s'composed of the following tasks:
a) A1l arrays are dimensioned,

b) The following filter parameters are read in: -

(1) Filter constants,
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(2) Update interval times for kinematic and aspect filters

|
{ (same value read in for each, for this application -- At),

(3) Dimensions and upper diagonal element values of the symmetric
covariance matrices Po (initial kinematic state), Q (kine-

matic plant noise), R (kinematic measurement noise), P
(0

t

E (initial aspect state), Q, (aspect plant noise) and R,

(aspect measurement noise),

F (4) o? values for uncertainties imposed on radar and aspect
measurements used to update interactive filter [six such
of values for kinematic filter and six values for aspect
filter]. (omitted for on-line version)

c) Good initial conditions are established for kinematic states,
aspect states, angle of attack and normal acceleration direction
by using the first set of actual trajectory data from the tra-

jectory tape. (For on-line version, use first set of measured

trajectory data.)

Block 2. Propagate Kinematic Filter, State and Covariance

The expected values of the kinematic state and corresﬁonding state
cov;riance are propagated forward over the interval between updates by
integration from their previous updated values. A fourth-order Runge-
Kutta integration algorithm is used for this purpose. This is an
accurate, general purpose integration algorithm which will provide good
results for a wide range of dynamics. It may be possible to use a simpler
integration algorithm for an on-l1ine version with these particular
dynamics. Integration is from t = t tot=t., where teer - tk = At.

The state equation

Rt t) = Fri(el £), ()3 (2-46)
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= L]
x(tkltk) = X

(2-47)

is integrated to yield ik;]

and

PtIt,) = FLtsk(t[t)1 P(t|t,) + Ptlt, FTTesx(tlt,)1 + aoaT (2-48)
P(tlt,) = p* (2-49)

is integrated to yield Pk+1

In Eq (2-48), F is given by

F(t;f(tltk)] = m (2-50)
, X =-_Z<
x = x(tt,)
i.e., an nxn matrix whose i-j component is given by
2 of . [x,u(t)]
Fo.[tix(t|t, )] —_— (2-51)
iJ k ox A
J X = x(t|t,)

Differentiating Eq (2-16),
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Note from Eq (2-52) that F is time-varying since both X, (which is &,
related to the magnitude of normal load acceleration) and the normal
load acceleration direction vary throughout the propagation cycle. The
change in both of these parameters is small enough during the filter

9 iteration interval, however, to assume them to be constant. No new direc-

tion information is being made available during the propagation cycle

for varying the directional unit vector, and the time constant on Xq0* Ter
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is at least an order of magnitude larger than the cycle time. Thus,
FLtsx(t|t, )] is approximated as F[tk;iltkltk)] for all te(t,,t,,,).
The kinematic state covariance matrix is ten by ten or 100 elements

lg-’z‘—]l or 55 ele-

in size. Because it is symmetric, however, only
ments are unique. The P matrix is converted to a 55-element vector so
that it may be integrated using the Runge-Kutta subroutine. The inte-
grated P vector is converted back to matrix form for subsequent update
computations.
Block 3. Propagate Aspect Filter, State and Covariance

The state differential equation and measurement equations for the
aspect filter {Eqs (2-29), (2-38)} are linear with constant coefficients.
Hence a standard Kalman filter formulation is employed for estimating
aspect states. State estimates are propagated using the state transition
matrix. Before implementing the filter, covariance propagation equations
were infegrated analytically, so that P;k+1 is computed directly from
P; : Qa and At, without need for numerical integration.
Blgck 4. Compute Target Angle of Attack From Propagated Kinematics

Approximate target angle of attack is computed from the current
best estimate of target velocity and acceleration using the technique
described in detail in Appendix D. Current angle of attack is required
in order to compute normal load acceleration direction as discussed in
block 5 below.
Block 5. Compute Normal Load Acceleration Direction From Propagated

Aspect and Angle of Attack

Normal load acce]érat1on direction is computed from propagated

target aspect states--yaw, pitch and roll--computed in block 3 and target

angle of attack computed in block 4. A better estimate of normal load




]
i acceleration direction is required to improve the prediction of target

E |
|

position. The unit vector in the direction of normal load acceleration is
computed from the equation,
0
I _ +b v

I (2-53) 1

-1

where

T? = (Tg)T is the transformation from b to I coordinates derived
in Appendix B, in terms of yaw, pitch and roll,
T; is in térms of angle of attack, and

(0 0 -l]T is a unit vector, expressed in the velocity frame, in

the direction of expected normal load acceleration.
Block 6. Predict Target Position Ahead An Approximate Projectile Time-
of-Flight
Predicted target position an approximate projectile time-of-flight

(tf) in the future will be computed from the approximate equation, .

A A ~ t
Peltirtelty q) = Dyltelt, 1) + Tl It 1)(t) + ay(ylt, ) (2-54)

Pelteltiq) = B/altyltey) * Byt (2-55)
LACAENER AR LU ACH RES

The subscripts "t" and."a" represent t/I and a/I, respectively.
Attacker position B;(tk) and velocity V;(tk) are assumed available
from the attacker INS, while Bi/a and %ila are available from the kinematic

filter directly. Total target acceleration is modeled directly in the




kinematic filter and is available without the requirement to add relative

acceleration to attacker acceleration, i.e.,

a(t t, ) =3yt It ;) +g+8altlt, ;) (2-57)

Predicted target position (based on propagation equations) is then
written onto an output record for later use. (For on-line version,
predicted target position would not be required after propagation cycle,
since the more accurate update value would be computed shortly thereafter.
Block 6 would be deleted.)
Block 7. Compute Yaw, Pitch, Roll Pseudo-measurements From Propagated
Kinematic
Approximate values of target yaw, pitch and roll angles are computed
from current best estimates of total target velocity and acceleration.
The computational procedure is outlined in section 2.3.2.2 and explained
in detail in Appendix D. These approximate angles, based on propagated
kinematic estimates, form pseudo-measurements for updating the aspect
filter in block 12.
Block 8. Read In Actual Trajectory Data (Kinematic and Aspect) For One
Time Step
Actual trajectory values for a single time step are read from the
trajectory tape for both attacker and target. Table II identifies the
actual trajectory parameters read in at each update time. (The on-line
version would read in actual kinematic and aspect measurements.)
Block 9. Corrupt Acfua1 Trajectory Vilues To Form Radar and Aspect
Measurements
Actual trajectory values representing radar measurements, range,

azimuth, elevation, range rate, azimuth rate, elevation rate and target
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aspect angle measurements, yaw, pitch, and roll, are corrupted with white

Gaussian noise to simulate system errors in an operational setting. {

(Block 9 is deleted for on-line version.)

Table II. Parameters Read From Trajectory Tape

Time (seconds)

Range (feet)

Azimuth, Elevation (radians)

Range Rate (ft/sec)

Azimuth rate, Elevation rate (rad/sec)

Target Yaw, Pitch, Roll (degrees)

North, east, down components of following kinematic
parameters: (A1l are total, i.e., relative to
inertial space, and expressed in inertial coordinates.)

Target:

Position (feet)

Velocity (ft/sec)

Acceleration (ft/sec?)
Attacker:

Position (feet)

Velocity (ft/sec)

Acceleration (ft/sec?)

Block 10. Zero-mean, Gaussian White Noise Generator
Appropriate variances are provided to the noise generator. Realizations

of a white, zero-mean, near-Gaussian random variable, W, of unit variance is

generated according to the relation




e ——————— T ——

12
W= I (y;-0.5) (2-58)

i iml
| where y, is a realization of the random variable y uniformly distributed
on the interval (0,1). If the output noise, n, is to have variance e

then n is set to

|=

= oW (2-59)

(Block 10 is deleted for on-line version.)
Block 11. Updatg Kinematic Filter With New Measurements

Standard extended Kalman filter equations are used to update state
estimates. Before implementing the filter, the non-linear measurement
vector h(x) {Eq (2-22)} was differentiated analytically and the
resulting (6x10) H(x) matrix is recomputed at update time ty with
X = Xy
Block 12. Update Aspect Filter With New Measurements, From Input Source

and From Propagated Aspect Pseudo-measurements

Standard Kalman update equations are used. Aspect pseudo-measure-
ments from block 7 as well as simulated sensor measurements from block 9
are employed to update the estimate of aspect states.

Blocks 13 and 14. Compute Target Angle of Attack From Updated Kinematics,

and Compute Normal Acceleration From Updated Aspect
and Angle of Attack
Same as blocks 4 and 5, but using updated aspect and kinematics for

angle of attack and normal direction computations.
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Block 15. Predict Target Position Ahead An Approximate Projectile

Time-of-Flight

Predicted target position after update is computed as
~ ~ A A tfz
Peltttelty) = Pyltlt) + Vet It ) (t) + a (1t )5-)  (2-60)

where

Peltlt) = B/altilty) + Bylt,) (2-61)

ACATARES ARCATRRR ACH (2-62)

This model does not account for rotation of the target aspect, and
hence the acceleration direction, during the prediction time, i.e., a
constant inertial direction for acceleration is assumed over the pre-
diction interval. An improved position prediction is possible using a
technique developed recently by Terry [51]. This prediction technique
assumes that the angle between velocity and acceleration vectors, and
not the inertial acceleration, will be nearly constant durfng the pre-
diction interval. Hence, the velocity and acceleration are propagated
together using a target body-fixed coordinate frame while maintaining
a fixed angular relation.
Block 16. Trajectory Completion Decision

Trajectory completion is indicated by an end-of-file flag on the
trajectory tape. After completion, the algorithm is exited at STOP.
(Block 16 is deleted for on-line version.)
Block 17. Write Output Record

An output record of predicted target position (both propagated and
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updated) is made for later processing. (The on-line version would pro- |
vide predicted target position to the appropriate follow-on fire control ‘
algorithm. Predicted target position could be used, for example, to make
subsequent flight control decisions, orient guns or make fire/no-fire

decisions.)

2.4.2 Timing Sequence For Interactive Filter. Ordering of the computa-

tions outlined in the computer flow chart, Fig. 2-9, was governed by
considering the timing aspects of real-time implementation. A schematic
timing sequence chart is shown in Fig. 2-10. Update computations of
both the kinematic and aspect filters are made following the measurements
shown at tk. Pfopagation computations are made in the remaining time
before the next measurement is taken. In the simulation program, the

results of both the propagation computation before t, and the update

k
computation after tk are output as if they had occurred simultaneously
at tk.

Note that computation of yaw, pitch and roll pseudo-measurements
from kinematic estimates is accomplished prior to its being needed to
update the aspect filter but after the propagation cycle. The other
alternative was to accomplish this task just after the kinematic filter
update. This would provide more recent kinematic data for deducing
aspect information. However, a bad kinematic measurement would affect the
deduced aspect, which could have a destabilizing effect on the overall
update. The insertion of this task between the kinematic and aspect
filter updates would also, of course, increase the total update computa-

tion time (time from receipt of sensor measurements to computation of

updated states), which one strives to minimize. Another alternative

would be to update each filter separately, i.e., without using the




kinematic filter's ﬁ(tkltk) or i(tkltk_]) to update the aspect filter.
However, this alternative negates the interactiveness inherent in the
approach assumed for this problem. A parallel processing approach is
also discussed in a later chapter on real-time implementation considera-

tions.
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III. Performance Analysis and Computer Simulation

In Chapter II, mathematical formulations of the kinematic and target
aspect filters were developed. Chapter II also presented a top level
logic flow chart for a computer implementation of the interactive fi]ter.
The filter developed was the simulation version, so some details relating
to simulation techniques were necessarily included. This chapter will
outline the performance analysis plan used to validate the improved filter

configuration and will discuss the computer simulation in more detail.

3.1 Interactive Filter System Performance Analysis

The system performance analysis is designed to demonstrate the
improved target tracking characteristics of the interactive filter over
a conventional tracking filter for a representative ensemble of scenarios.
The analysis provides for an investigation of intrinsic filter behavior
such as recovery characteristics, sensitivity to unmodeled errors and
criticality of acceleration parameters a, 8, Y. The analysis also in-
cludes a comparison of interactive filter performance to an extended
Kalman filter algorithm which uses radar measurements only.

3.1.1 Scenarios. Four realistic three-dimensional target engage-
ment scenarios are chosen which encompass the following types of maneuvers:

Type Maneuvers
a) Typical combat maneuvers
b) Maneuvers which are typically difficult for other trackers

c) Maneuvers for which the combined filter éhould show particularly
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improved performance
The four scenarios are listed below and are illustrated in Figs.
3-1 through 3-4.
1. Distant break (Type a)
Close-in break with attacker overshoot (Types a,b)

Ro11 followed by high-g break (Types a,b,c)

Hw N

Head-on pass (Types b,c)

Table III provides some associated initial conditions. Each scenario

is ten seconds in length and aircraft attitude is indicated in the figures
every two seconds. In each scenarios, the attacker and target are
initially at an altitude of 20,000 feet.

The computer simulation program employed to generate the combat
engagements is FASTAC, [54] a two-aircraft, air-to-air combat evaluation
program developed by Battelle Columbus Laboratories under contract with
the Air Force Avionics Laboratory. It is basically an interactive version
of TACTICS II developed by RAND Corporation [23].

The engagement simulations are realistic with the following quali-
fications. 1) An aircraft will not break off an engagemenf even if
it has a speed advantage. It will continue maneuvering in an attempt to
achieve a position advantage. 2) A1l turns are coordinated (i.e., no
lateral component of velocity). 3) The attacker control strategy during
a tail-chase segment is pure pursuit (i.e., the attacker attempts to
direct its velocity vector along the instantaneous line-of-sight.) These
qualifications do not significantly impact the performance analysis
accomplished in this research for several reasons.

Qualification (1) has an impact on strategy but is not a limitation

for the relatively short scenario length of ten seconds. Also the
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scenarios are chosen to represent realistic defensive maneuvering
situations which would occur even if overall strategy were slightly
different. Qualification (2) is not an atypical assumption since the
pilot attempts to achieve this condition in all air-to-airmaneuvers
(with recent advances in Control Configured Vehicles for exotic flight
control/weapon delivery, being the exception). The pure pursuit mode
indicated in qualification (3) is typical of many air-to-air pursuit
engagements. Lead pursuit, in which the attacker velocity vector is
made to lead the line-of-sight by a few degrees in the turning plane,
is also used for some maneuvers. The difference between the two modes
represents little effect on vehicle trajectories and aspects for the
maneuvers considered.

3.1.2 Monte Carlo Analysis. A Monte Carlo simulation technique is

used as a means of demonstrating performance. Measurement noise sequences
are varied for each scenario during tuning and for performance analyses
after the filter has been tuned. Pertinent performance figures of merit
are averaged over all individual Monte Carlo runs to arrive at a composite
performance time history of sample statistics which represehts expected
filter performance. Initial tuning was achieved using one run, inter-
mediate tuning used 5 runs, while final performance results used 20 runs.
More details of this simulation technique are presented in the simulation
section later in this chapter.

3.1.3 Figures of Merit. The primary motivation for developing im-

proved state estimators for this class of targets is to predict target
position far enough into the future to aid in the implementation of

weapon delivery algorithms. Hence, the best weighting for combining

the estimated values of target position, velocity and acceleration, as




dictated by this application, is governed by the approximate prediction
Eqs (2-54) and (2-60).

An approximate upper limit for projectile time of flight, tf, is
assumed in order to compute predicted target bosition. Target range
typically varies from approximately 2000 feet to 5000 feet in air-to-air
combat engagements. At a typical projectile speed of 4000 - 5000 feet/
second, an assumption of 1.0 second for a nominal maximum projectile
time-of-flight is reasonable.

The assumption of a constant, nominal maximum for projectile time-
of-flight has advantages for the performance analysis. The assumption
of a constant prbjecti]e flight time avoids the problem of including in
the simulation an algorithm to compute projectile flight times from
the engagement geometry, aircraft kinematics, and projectile dynamics.
Also, because of having selected a nominally large value of tes actual
target prediction accuracies will tend to be better than indicated here,
so the performance analysis tends to represent a worst case.

Error in predicted target position is computed by comparing actual
target position (approximately one projectile time-of-flight into the
future) with predicted target position based upon the current estimate
of target position, velocity and acceleration.

%-g Ef(tk+tf|tk)
i=1

| k
e (t, +te It,)

1 m AI -1
m 2[pt/l.i(tk+tf‘tk) - pt/l(tk+tf)] (3-1)

N R =1
[y E Pt/l(tk+tfl t )1 - pt/x(tk“tf)
=] Y




where

k = update time index
m = number of Monte Carlo runs (varying measurement noise sequences)
i = Monte Carlo run index
tf = approximate projectile time-of-flight
FI (tk+tf) = actual total target position at time tk+tf
t/1

expressed in inertial coordinates

2] oy L
pt/Ii(tk+tf|tk) = prediction of total target position at time t +t.

based upon measurements through tyes for Monte

Carlo run i.
Of interest is the uncertainty in the target position prediction.
For a given scenario, the unbiased estimate of vaeriance of the target
prediction error at any sample time tk can be computed from the expression

= = T
{[ei(tk+tf|tk)][ ei(tk+tfltk)] }

I(t +t.) = L g
VL S e
e

- ooy D (st )30 B (g3t ]t 00T La=2)
where

El(tk+tf|tk) was defined in Eq (3-1),

I
Z:Eﬂtk+tf) = covariance of prediction error at time t, +t., with
respect to inertial coordinates.

The time-varying diagonal elements of the 2:__matrix provide variance
e

of the position prediction error components.

Two additional figures of merit are useful in characterizing filter
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performance, viz., magnitude of the cross-range component of total
target position error, and approximate circular error probable (CEP)
expressed in terms of error variances normal to the impact line-of-
sight. Position prediction error and error covariance in inertial
coordinates is transformed to line-of-sight coordinates. This transfor-
mation allows characterization of error and error variance perpendicular
to the line-of-sight from attacker to target at nominal time of pro-
jectile impact. Position prediction error in tracker line-of-sight (t1)

coordinates is given by

—t1 g =1 =
e (trtelty) = Tiq(t ttele (tk+tf|tk) (3-3)

and the corresponding error covariance is given by

Zﬂ - L) T L (3-4)
2 (Brte) = Tt L (et Tr (hote) ;

where
TI (tk+tf) = direction cosine matrix from inertial to tracker
g line-of-sight coordinate frames, developed in Appendix
B, evaluated at time of supposed projectile impact,

and

- ()T (3-5)

The assumption is made that the projectile speed is significantly
larger than the target.speed. Hence, position prediction error in the
direction of projectile velocity is not nearly as significant as the error

in prediction of cross range position. Assume, additionally, that the

projectile direction is nearly along the line-of-sight at time of impact.

T e




Error variances perpendicular to the line-of-sight can be characterized
in terms of approximate central circular error probable (CEP). Central
CEP is the radius of a circle about the mean error in which half of the
error values are statistically likely to occur. Omicting the covariance
elements involving prediction error along the line-of-sight, z;}(tk+tf)

can be expressed as

t1
B (tg) = ih= gt el (3-6)
e
2
= 0 %

. 3 v i 2
(Cross-correlation term, oyz ‘3/2°y°z’ has the same units as ay and
azz, but is indicated without the (2) exponent since it can be negative.)

Approximate CEP can be calculated by

2

ag (o]
)
0.675 o + 1—;»3; 3 0< o < 0.369
CEP = . (3-7)
0.562 g_ + o.slsc;q, 0.369 < -3 <
P a, =
where
2 = 2¢4in2 2anel o
°p a, sin®) + ZoyzsinA cosy + ay cos®A (3-8)
2 Zonel) o 2¢in2 £
oq a,%cos®A Zoyzsinx cosx + °y sin?) (3-9)
and ;
20
tan A = yz (3-10)

Qan 2 2_. 2)2 2
(°y o, ) + J(dy a, )+ 4°yz




where ) is the angle of coordinate rotation required to accomplish

decorrelation [53].

Note that these performance criteria indicate the merit of an
estimator only as it reflects in predicted target position. This
choice for figures of merit is based on the intended application of the
estimator in a predictive fire control/weapon delivery system. In
other words, the appropriate weighting on estimated target position,
velocity and acceleration to indicate performance is that dictated by
the truncated Taylor series prediction Egs (2-59)and (2-60).

Some other application might suggest a different weighting on the
kinematic (or even aspect) states. For example, a telescope pointing
system might reward precise current estimates of position and aspect.
While a good acceleration model would be required in order to achieve the
highly precise position and aspect estimates, quality of the acceleration
estimate need not be rewarded directly in the performance figures of merit.
For this feasibility study, the three figures of merit, or performance
criteria, discussed above were selected as a means of evaluqting per-
formance.

3.1.4 Comparative Radar Filter The performance evaluation of the

interactive filter algorithm can be separated into two analysis areas,
intrinsic and comparative. The latter evaluates the filter's performance
as it compares to a filter which models target relative kinematics but
does not model target aspect. The same radar measurements and measure-
ment equations are assumed for this filter as for the interactive filter
discussed in Chapter II. A non-adaptive nine-state extended Kalman filter

with linear dynamics and first-order Gauss-Markov relative acceleration

is used for the comparative filter. The model upon which this filter is




T,

based is

1=

and

E CH(OW (t+1)1 = Qs(x) (3-14)

Values for Q are given in Appendix E.

3.1.5 Tuning Both the interactive filter and comparative filter
must be tuned for propér operation. The comparative radar filter is
tuned by adjusting modeling noise covariance, Q, and time constants Tpys
Tes Ty in an attempt to get the "best" performance over all scenarios.

The same value of a time constant or covariance element is used for all
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three inertial components. This simplifies the tuning process and helps

to preclude over-tuning to a particular scenario. It also, of course,
reflects the expectation that, over an ensemble of maneuvers, target
kinematics are independent of their representation in an inertial coordi-
nate frame.

Tuning of the interactive filter is considerably more complex. Vari-
ations are made in time constants, Q, Qa and those elements of the aspect
measurement matrix, Ra’ which model uncertainty in the kinematically
derived aspect angle pseudo-measurements. Possible variations in other
filter parameters (such as o, B, Y and measurement noise covariance, R)
are considered 1$ter as analysis techniques and not part of the tuning
process. R was not varied during tuning, as the same radar noise vari-
ances were used in the filter model as were used in the radar noise
generation.

A pre-tuning baseline configuration for filter parameters was assumed.
The filter parameters are optimized (in the sense of yielding best per-
formance according to the chosen figures of merit) during the tuning pro-
cess. Six matrices (Pb, Q, R, Pao’ Qo Ra) and several other parameters
(o Bs ¥ Tar Ter Tge Te ) are needed to specify the interactive filter
model. The radar model can be specified with three matrices (Po‘ Q, R)
and three parameters (rn, Ter T4 ). However, one of these three matrices,
the radar measurement noise covariance, R, is the same as that for the
interactive filter and need not be repeated. Pre-tuning filter parameters
and, where applicable, -tuned parameters are tabulated in Appendix E. Only
diagonal elements of matrices are specified. O0ff-diagonal elements are
assumed zero.

Care was taken to avoid over-tuning the filters to a particular
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scenario. Approximate values of tuning parameters were achieved during
initial tuning, accomplished using only scenario 1 and a single noise
sequence (a "Monte Carlo" of one). Subsequently, trial tuning parameters
were repeatedly selected and figures of merit were checked for all
scenarios (at the "intermediate" tuning level of five Monte Carlo runs)
to select the "best" performance over the ensemble of trajectories. The
process was somewhat subjective, as no composite figure of merit was
defined for application across an ensemble of scenarios. Further re-
search, particularly in the area of adaptivity, would likely improve
performance if trajectory-dependent filter tuning were pursued.

3.1.6 Performance Analysis Plan The previous sections in this

chapter have discussed the primary concerns in establishing a performance
analysis. This section outlines specific questions or areas of investi-
gation which are addressed in the demonstration of performance. Results
are given in Chapter IV. The specific areas of investigation are listed
in Table IV. The table indicates the methods used to examine performance

in the varicus areas of investigation, and indicates whether an area is

considered comparative or non-comparative.




(p,3u02) dAl3esedwo)-uoyN JO dALIededwory
‘3143w JO saunbly duedwo) a3l ul palapow J93| L4 uL paiapow ueyy uabuaey
ueyl 9SJOM SaWwL} £ dpew SUOLIBLASP pJepuels £1JU83SLSUOD SUOUJd JUBWBUNSEIW Jepey °2
uorjeaado
(uorjeuLquod 3seI-3SJ0M UL og) 33e3s-Apeals paydeau 93e35-Apeals paydoead Sey Ja3| L4
Sey 433 L4 49340 JUBWAUNSEIW Jeped peq JJ3sSu] 43340 JuBWa4nSEaw peq awi3-auQ °q
‘(493114 dAL3eURdWOd . 1

404 UOL}RUD|IJJ® dALIR|3A) UOLIBU3|3JJR |03
uL s,6 ¢ pue A310013A dALjeR|dU uL I9S/33
001 ‘uotjrsod dAL3R|dJ UL 3994 Q0L 40 SAOUUd

U3LM s33e3s UL SuOL3Lpuod |eL3LuL peq uL 33§ SUGL3LpUOD jeiliul peg -e
SIL3SLUd}
3 -Jedey) A3LALILSUBS pue AudA0d9y °¢
‘A pue g ~
‘0 Saadjaweded JO 3IL0YD 03 SIURWMIOS
-42d 493 L) JO AJLALILSUSS BULWIIISQ
‘3143w JO saunbLy autwexa SA ¢g 0 Auep N Sajaureded 433 L4 40 A3L{eDLIHA) °2
9jed4edas yoea 40} Sud3|Ll} OM} 3y3 40j paued *SOLJRUSIS || 4BAO 3LJ3W JO
-wod ade ybiLs-40-3ui| 03 seindtpuaduaad 43 sadnbLy Buisn sus3fts Suedwo)
pue apnjLubew u04Ud 3bueU-SSOLD 3beuaAR
‘apnjtubew 404aud |e303 3beuaAe ‘pauny Idu(Q ) JL43) 40 Sauanbiy |
|
N
pPoy3ay 40 ) uoL3ebL3saAul 0 eaay

ueid sisAieuy aduewuojddqd ‘Al d|qel

e e i ctabiaiolie sl o




'
i

(p,3u02)

*uo13dnuu0d uelLssney ajLym jo sLseq

9y3} uo paubLsap [[L3IS ¢'9°L ‘ademeun ud}| L}
Y3LlM 3nq (3IX33 UL paulyap) 3SLOuU ueLssney-uou
a3etadoadde yjim sjuswdunsesw 3o3dse (-3 3dnuauo)

*s|auueyd 323dse aauy3l ||e 03 seiLq aaubap G-z2 ppy

.m>onoapvmmmamwmmumsmm
‘paseaudul ade sewbLs 3sLOu Se paseadul sL Y

.o>*mmms_uﬁn.oxumos_uﬁm“mmmmu
‘paseaJoul sewbLs asLou 3uejsuod play ¥

i 9ouewaoyuad 493 | L4 UO dARY SLY3} pLnoM

309449 3eYyM ‘uoL3dnuuod Juswa4nseau
3109dse 404 pasn duam |apow 3sLou
ueLssneg-uou ajerudosdde awos 41 2

i(dJaemeun U433 |L4) dduew.Oy
-49d 433 L} 303i4e SjusWBANSEIU
309dse 3ndui uo seLq e pLNOM MOH °q

aJdeme 4d31L4 (2

ademeun 4d3[t4 (L

(PasSeaudul SL ISLOU JUBWAINSeUW
109dse Se 33e40LJ333p 3duRWJ0Jd
43314 SALIORUSJUL BY] SIOP MOH °®©

N sisAeuy asLoN 3o9dsy -G
$SOJRWL]IS3 UoL}eud|3Dd0
pue A3120|3A uo paseq 3dadse
pajewL}sa pue 3o9dse anuj uaaM3aq
*303dse 39bue] paALsdp A||edLjewsuly (seouetdeA pue) Jouud abeuane
wodj apew s3o|d Je|iwis yiLm adedwo) 9yl YilM auedwod SLY3 SI0p MOH °q
*|3uueyd 3oadse yosea 4oy paljoid pue iad3114 3oadse
(ol4e) 23uol) pabeusAe u0uud Buly|nsad pue 3yl woujy 3d9dse pajewL}ss pue
303dse anu} 03 padedwod adae 3ndino 433 | L} 303dse anJu} ulaaMaq (SadueLueA
3o9dse 3yjl wouy 3oadse JO Sajewilsy pue) aouaud abeasAe ayz SiL Jeym ‘e
N siLsA|euy 404u3 3o2dsy ¢
*N
poylap 40 ) uoLjebL3saAu] jo eauay

77

© e —




*suorjepeabap 43yjzo pue

A3L)Lqejsul jo subLs 40j dduewuojuad aAuasqQ

* ,Sjudwaunseaw-opnasd, 3dadse uL aAea| 3nq sjusuw
-9J4nseaw (-3 93eULWL|d 03 43|l 94NIONUISIAY

(UOL3O3ULPp UOLJRUS|DIJR pRO| . |BWJAOU
buLAL4dp 404 pasn aq uoLjeda|adde
pue A3100|9A uo paseq ajewL}s3
3032dse ay3 pLnod ‘3| qe|LeAR 3JLAdp
uot3tubodad uuaajjed ou auaMm audy3 4]

d|qeLLeAy JON wa3SAS ¥d/0-3 9

POy

40 9

uorjebr3saAu] jo eauy




e A 5. ik T

3.2 Computer Simulation

This section outlines the computer implementation of the performance
analysis plan developed in the previous section. The simulation is per-
formed on a Control Data Corporation model 7700 computer with a SCOPE
operating system and FORTRAN IV Extended program language. Fig. 3-5 shows
the five phases of the simulation. These phases evolve naturally from
the tasks to be performed. The representative trajectories are generated
by the FASTAC program in phase I. The data must be reformatted in phase
IT to conform with conventions adopted for the filter formulation. The
filter program in phase III is either the interactive filter shown in
Fig. 2-2 or the radar comparative filter discussed in section 3.1.4.

The output data generated by the filter in phase III contains m repetitions
of the trajectory where m is the Monte Carlo runs. Phase IV computes the
error statistics required in the performance analysis by comparing the
filter outputs with the original noise-free trajectory. Finally, perti-

nent plots are generated in phase V.
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IV. Results and Discussion

4.1 Figures of Merit

The results discussed in this and the following sections were
established according the performance analysis plan presented in Table
IV. rPerformance of the tuned interactive filter is compared to that of
the tuned radar-only filter in Table V. Average and peak values of each
of the figures of merit are compared for each of the scenarios. The
average value is taken from the plots for steady-state operation (after
initial transients have subsided, approximately one second into trajectory).
The peak is taken at the worst error (but after initial transients have
subsided). The plots for each of these figures of merit, for scenarios
1 through 4 are included in Appendix A as Figures A-1 to A- 6, A-41 to A-46,
A-47 to A-52 and A-53 to A-58, respectively.

In each of the four scenarios, the average error and peak error in
all three figures of merit are less for the interactive filter than for
the radar-only filter. The comparison is particularly dramatic foi scenario
4. The radar-only filter appears to break lock at approximately the time
the target and attacker are abreast. The maximum average error is greater
than 14,000 feet for the radar-only filter but is only 160 feet for the
interactive filter. Tne radar-only filter had not fully recovered from
this tracking loss at the end of the scenario six seconds later. The
interactive filter, on the other hand, recovered to steady-state operation

in less than two seconds after the dramatic maneuver, as shown in Fig. A-53.
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A comparison of average CEP in the plane perpendicular to the line-
of-sight is not nearly so contrasting as for the other two figures of
merit. There is little difference between the interactive and the radar-
only filters for this performance criterion except for scenario 4. The
average CEP appears to be nearly steady at about 12-16 feet for both
filters for scenarios 1, 2 and 3. In scenario 4, however, the maximum
CEP is over 6,000 feet for the radar-only filter and only 100 feet for
the interactive filter (Figures A-57and A-58).

4.2 Criticality of Filter Parameters

The parameters a, Band vy, which determine the shape of the pdf for
acceleration magnitude, were varied to determine the sensitivity of
filter performance to pdf shape. Fig. 4-1 shows the acceleration magni-
tude pdf for several combinations of these parameters. The parameter a
represents a maximum acceleration limit. Hence, this parameter is set
to 8 g's and is not varied for this study. The values for gand y were
selected empirically to model the density of probability at high
acceleration values. Reducing the magnitude of the negative parameter
B shifts the mode of the pdf closer to the maximum limit a, and for a
given value y also makes the shape of the pdf mure peaked. Reducing the
value of the parameter y for a given B also has a peaking effect.

Fig. 4-1a illustrates the choice of pdf parameters for the base-
line filter for which filter performance has already been determined.
Two additional parameter choices were selected for simulation in the
interactive filter--Figures4-1c and f. The trend in these two figures
is toward greater peak{ng of the pdf at higher acceleration values which
are typical of those occurring in these scenarios. The results of
these choices are shown in Fig. A-7 and Fig. A-8. Approximate steady-

state performance values are also shown in Table VI for the three cases




B

-2

A

DENSITY
~ (2]

PROBABILITY

2 __1 1 1 L = 2

LI T R T e
ORMAL LOAD ACCELERATION MAGNITUDE (g's!

a. a=8, B=-4, v=0.5

o
-

w »
y -

-_— N
T

PROBABILITY DENSITY

10 1 ¢ 3 & SigrTyg
NORMAL LOAD ACCELERATION MAGNITUDE (g's|

c. a=8, B=-2, v=0.5

PROBABILITY DENSITY

60
50
a0
30
2
10
o,

S

2

Fig. 4-1. Acceleration pdf For Several Choices of Parameters a, B8, Y

s L n L
LIS RS N AU LA TR
NORMAL LOAD ACCELERATION MAGNITUDE ig's,

e. a=8’ 8="19 Y=1

PROBABILITY DENSITY

4 e . S .

1 0 | e TR e G R TR
NORMAL LOAD ACCELERATION MAGNITUDE g's

b. a=8, B=-4, y=0.25

80
10
60
50
40
20
10

0

PROBABILITY DENSITY
“«
S

o

s

1 1 L 1 A
1 0 IR e (R (S
NORMAL LOAD ACCELERATION MAGNITUDE (g's!

d. a=8, B=-2, y=0.25

PROBABILITY DENSITY
»

2%
1F
e o L .l

0 1 2 3 & § 6 1
NORMAL LOAD ACCELERATION MAGNITUDE (g's!

f. 0=8, B=-1’ Y=005




represented by Fig. 4-la, c and f. The steady-state value of average

error magnitude for scenario 1 dropped from about 20 feet for Fig. 4-la,
to approximately 15 feet for Fig. 4-1c, to approximately 12 feet for Fig.
4-1f. Average cross-range predicted position error and cross-range CEP,

however, show little change as a result of this parameter variation.

Hence, these plots are not included. |

4.3 Recovery and Sensitivity Characteristics

4.3.1 Bad Initial Conditions. Bad initial conditions were set in

for kinematic filter states with errors of 100 feet in relative position,

100 ft/sec in relative velocity and 3 g's in total acceleration (relative

acceleration for éomparative filter). Figures A-9 and A-10 compare the
total predicted position error for the interactive and radar-only filters
for scenario 1. As can be seen, the time to reach steady-state operation
is approximately the same (one second) for each filter, as is the magni-

tude of the initial transient.

4.3.2 One-Time Bad Measurement. A one-time bad radar measurement ﬁ

was inserted into otherwise normal measurement data at five seconds into
scenario 1, in order to examine the sensitivity and recovery'characteristics
of the interactive filter as compared to the radar-only filter. This bad
measurement was formed by corrupting all the true kinematic values (range,
range rate, angles and rates) with +30c additive noise values, where ¢ is
the appropriate standard deviation for each particular measurement.

Plots of total and cross-range predicted position error for both
the interactive and radar-only filters are shown in Figures A-11 through
A-14 . Cross-range CEP showed virtually no effect from the bad measurement
and hence is not included in the plots. The response to the bad measurement

appears at six seconds, instead of five, because the plot shows position

85




e

* K1aAL3oadsaa ¢y pue o ‘ei-4 614 03 puodsauuod Sased Iday3 ayl

*3x93 ul paure|dxa se patdeA g ALuo $G'0 = A ‘g =D :330)

sL/zL 9L/L gL/zL - =9
sL/ztL €L/9 22/sL - =19
SL/2L SL/S 0€/02 p- =9 3
40443 u0L3LS0d J0J4U] UOLILSOd !
439 9buey-ssou) P9301paud abuey-ssou) pajolpauad (e300l

[3934 UL San|ep. ‘)yeaqd/abeasAy] [ OLARUIIS *Suajweded 433|t4

R

SNOLJARp S3N|eA dduURWUOIUAdd 93e3S-ApealS djewirxoaddy 1A @1qel




error at the supposed time of projectile impact, with an assumed pro-
jectile time-of-flight of one second.

As shown in these figures, the interactive filter recovers quickly
from the bad measurements (about 5 to 10 measurement cycles) as does the
radar-only filter. The interactive filter shows a greater sensitivity
to this bad measurement as evidenced by the larger predicted position
error. The cross-range predicted position error plot for the radar-only
filter actually shows an improvement, rather than a degradation, at the
bad measurement. This is likely due to a filter update which, because
of the particular combination of bad radar measurements, tends to lead
or anticipate thé maneuver, at least as projected into the cross-range
plane. The interactive filter, with its different states to update, is
more sensitive to this bad measurement. An extension to this research
would treat the bad-measurement recovery and sensitivity problem by

varying the magnitude and sign of the corruption composing the bad

measurement, rather than assuming the same magnitude and sign of the

corruption for each Monte Carlo sample as was done in this research.

4.3.3 Unmodeled Radar Errors. Using scenario 1, responses to

radar measurement errors consistently larger than modeled in the filters

are determined for both interactive and radar-only filters. This is done
by increasing the standard deviations of the white, Gaussian, radar

] measurement noises by a factor of three. The radar noise levels are

3 summarized in Table VII. The filter model is not changed and the measure-
ment covariance matrix is as specified in Appendix E, Table E-III. Also,

k aspect noises levels are not changed.

The results of this comparison are plotted in Figures A-15 through

A- 20 . Average steady-state values of total and cross-range predicted




position error, and average CEP are, respectively, 20 feet, 10 feet and
35 feet for the interactive filter. These compare, respectively, to 50
feet, 20 feet and 50 feet for the radar-only filter. Again, a factor of
at least two is evident in the first two figures of merit and some im-
provement in the third. These results are summarized in Table VIII.
They demonstrate that, as with the radar-only filter, the interactive
filter is not overly sensitive to deviations in radar noise levels from

those modeled in the filter.

Table VII. Radar Measurement Noise Levels,

Large Unmodeled Errors

Radar Measurement Actual Noise Level, Filter Assumed Noise

lo Level, lo
Range 150 feet 50 feet
Azimuth Angle 6 mrad | 2 mrad
Elevation Angle 6 mrad 2 mrad
Range Rate 150 ft/sec 50 ft/sec
Azimuth Rate 12 mrad/sec 4 mrad/sec
Elevation Rate 12 mrad/sec 4 mrad/sec
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Table VIII. Average Steady-State Performance Values, With
Large Unmodeled Radar Errors (Values in Feet)

Total Predicted | Cross-Range Predicted| Cross-Range
Position Error Position Errors CEP
Inter- Radar- | Inter- Radar- |Inter- | Radar-
Active Only Active Only Active | Only
Large Unmodeled
Raciw Evrars 20 50 10 20 35 50
Correctly Modeled
Radar Errors 20 50 5 12 12 16

4.4 Aspect Error Analysis

Two forms of target aspect measurements are provided as inputs to
the aspect Kalman filter--kinematically derived aspect and aspect based
upon pattern recognition derivates from electro-optical imagery data.

The latter of these two aspect measurement sources is simulated by corrup-
ting true aspect with white, Gaussian noise in all three channels-- yaw
(or heading), pitch and roll. Kinematically derived target aspect, as
discussed in Chapter II and developed in detail in Appendix D, is a
function of estimated target velocity, acceleration and computed angle

of attack. Kinematically derived aspect is modeled in the filter as
having a 10 degree one-sigma uncertainty, as compared to five degrees
modeled for the E-0/PR aspect.

The estimated target aspect output from the Kalman filter (both
propagated and updated values) can be compared to true aspect to form anerror
in all three channels. This average error, along with actual one-sigma
deviations, is plotted for scenario 1 in Fig. A-21. This can be compared

to error in kinematically derived target aspect, shown in Fig. A- 22 .

(Note the difference in ordinate scales.)




Standard deviation appears to be approximately 2 degrees for esti-
mated target aspect and approximately 2 degrees or less for the kinemati-
cally derived aspect. The guess of 10 degrees one-sigma for filter model-
ing of kinematically derived aspect is higher than the 2 degrees evidenced
here. However, the filter anticipates (or, at least, models) a zero-
mean error which this clearly is not.

A bias of approximately 3-5 degrees is evident in the yaw channel
of Fig. A-22. This bias is likely due to a slight error in computing
angle of attack from load acceleration magnitude. Recall that the com-
putation of the kinematically derived aspect pseudo-measurements is
based upon a ve]bcity frame definition which depends directly on the
value of angle of attack. (See Appendix D.) An error in angle of
attack translates directly into errors in inertially-referenced heading
and pitch, the exact amount into each depending upon the value of roll.
For example, at zero degrees of roll, angle of attack error translates
directly into only pitch error. Whereas, at 90° roll, an angle of attack
error becomes a heading, or yaw, error. Note that for the nearly 90 degrees
of roll occurring in scenarios 1 and 2, an error in the computation of
angle of attack would result in a nearly equal error in the computation

of yaw.

4.5 Aspect Noise Analysis

4.5.1 Measurement Noise Increased. An E-0/PR aspect measurement

noise of five degrees (1o) in each aspect channel was assumed for the
baseline configuration discussed in the previous sections. Two additional
cases were run--10°(1g) and 25° (1g)--with the filter both aware and un-
aware, i.e., with the aspect measurement covariance both modeling and not

modeling the increased input noise strengths. The results for the 25°
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case are shown for scenario 1 in Figures A-23 through A-30.

An increase from 5° to 10° in one-sigma measurement error has an
insignificant effect on performance, whether the proper noise strength is
modeled in the filter or not. However, an increase from 5° to 25°
one-sigma error degrades average predicted position error by about 35%
and average CEP by more than 75%, for the case of the filter unaware.

For the other case in which the increased aspect measurement noise in
included in the filter model, the filter appears to develop an instabil-
ity which worsens throughout the scenario. Average predicted position
error is approximately twice that of the 5° ore-sigma case. Cross-range
predicted position error, in particular, shows a growing (and seemingly
periodic) instability. Average CEP for this case, however, is only about
25% higher. Inclusion of plots of error in kinematically derived target
aspect and Kalman filter estimated aspect helps to determine the nature

of the instability. When the aspect filter is unaware of the degraded
E-0/PR aspect measurements, the standard deviation of the error is greater
than that of the aware filter. However, its mean is near zero since the
measurement data, although noisier than known by the filter, is corrupted
with zero-mean ncise. The other filter, aware of greater uncertainty

in the E-0/PR data, weights the kinematically derived aspect relatively
more. Hence, the aspect filter output tends to track the input kinematic
data, as shown in Figures A-29 and A-30 . Each filter in this case is
tending to couple into the other increasingly bad information about target
aspect. Without the stabilizing effect of measured aspect, the interactive
filter system seems to.exhibit instability. This tendency is examined
further by eliminating the E-O/PR system altogether, the results of which

are discussed later in this chapter.
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4.5.2 Measurement Bias. A zero-mean, Gaussian white noise was

added to each of the three aspect measurement channels for the baseline
configuration discussed in earlier sections. This measurement noise
attempts to simulate uncertainties introduced by the sensor and the
generic pattern recognition algorithm. Subsequently, a fixed bias of
five degrees was added to each of the zero-mean, Gaussian white noise
corruptions (with the filter unaware) to determine the sensitivity of
the interactive filter to aspect bias errors. Such errors might be due
to imperfect pattern recognition techniques or to geometric conversions
from image frame to inertial frame. Figures A-31 through A-33 illustrate
the performance of the interactive filter with aspect measurement bias.
A11 three figures of merit indicate only a slight degradation in per-
formance from the baseline configuration. Figures A-34 and A-35 respec-
tively illustrate the aspect errors from the filter and the errors in
kinematically derived target aspect. The apparent transfer of the bias
error directly into the filter output in Figure A-34, is due to the

high weighting of the biased aspect measurement inputs, compared to the
Tower weighting of kinematically derived aspect, i.e., the filter was
not made aware of the measurement bias error.

4.5.3 Different Noise Model. The preceding analyses have been per-

formed using a relatively simple noise model for target aspect measure-
ments. True, inertially referenced, target yaw, pitch and roll angles
were corrupted with white, Gaussian noise and input to the Kalman filter.
A more complex, and probably more realistic, noise model was devised to
generate aspect measurements as follows. True, inertially-referenced,
target aspect is transformed to image plane aspect via tracker azimuth
and elevation angles. This image plane aspect is corrdpted with white,

Gaussian noise and the resulting angles rounded to the nearest five
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degrees. This simulat-s & closest-neighbor/table-look-up pattern
recognition technique, 1ike that discussed in Chapter II. The corrupted,
rounded, image plane aspect angles are then transformed back into the
inertial reference frame and provided to the filter. This modeling
technique is used with filter unaware, i.e., the white, Gaussian noise
model is still assumed in the filter for aspect measurements. This model
was run using scenario 1. The results of using this noise model are
insignificantly different from results using the simpler model and, hence,
the plots showing performance are not included. This result verifies

the robustness of the filter model to variations in input aspect noise

characteristics.

4.6 E-0/PR System Not Available

The section on Aspect Noise Analysis showed that performance of the
interactive filter diminished as E-O/PR measurement noise was increased.
The interactive filter can be restructured to eliminate E-0/PR measure-
ments altogether. In this configuration, only the kinematically derived
aspect pseudo-measurements are provided to the aspect Kalman filter, i.e.,
the only external measurements to the interactive filter are from the
radar system. The chief concern in this “bootstrap" configuration is
stability. The results for scenario 1, illustrated in Figures A-36 through
A-40, show that the steady-state performance of this system is somewhat
better than the radar-only comparative filter, until instability begins
to set in at about 4 seconds into the trajectory. Standard deviation of
the kinematically derived aspect error progressively increases between
4 seconds and 7 seconds and the error appears to become more oscillatory

toward the end of the 10-second trajectory, as evidenced in Fig. A-40.
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The interactive filter system appears to require an external source of
target aspect measurements in order to avoid instability. A possible
extension of this research would be to tune this interactive (no E-0/PR)

system for maximum performance, which was not accomplished in this
research.




V. Considerations For Real-Time Implementation

This chapter discusses several real-time implementation techniques
and their application to the computational system developed in the pre-
vious chapters. The benefit of a given technique can be measured quanti-
tatively only if it is applied to a specific programming language and a
particular machine. Language- and machine-dependent implementation con-
siderations have.been avoided in this feasibility demonstration in order
to assess the merits of the proposed interactive system irrespective of
detailed software and hardware structure. Hence, only a qualitative

judgment will be made on the benefit drawn from a particular real-time

implementation technique. The techniques considered are:
1. Parallel Processing

Sparse Matrix Techniques

Fixed-Gain Filter

Scalar Processing of Measurements

Quasi-Static Filter Approximation

(=) B S L L A A

Filter Linearization
1 7. Angle Approximations

5.1 Parallel Processing

The computational tasks diagrammed in the flow chart of Fig. 2-2
and in the timing sequence chart of Fig. 2-10, need not be accomplished
in series. Updating of the kinematic filter and the aspect filters are

independent operations and could be done in parallel. Likewise,




propagation for the two filters are unrelated and could be accomplished
by separate processors. Interaction between filters need occur only
after each propagation and update task has been accomplished. Fig. 5-1
illustrates how parallel processing may be utilized for the interactive
filter system.

The attempt has been made here to indicate how several independent
series of computations may be combined in a parallel structure. A de-
tailed implementation of parallel processing must account for minimum and
maximum times to complete a given computational task, and attempt, within
this constraint, to minimize dead-time in each processor chain. That
level of detail fs not possible without choosing a particular (repre-
sentative or generic) hardware/software structure.

5.2 Sparse Matrix Techniques

Real-time implementation of the interactive filter should consider
techniques for reducing computations associated with state and covariance
propagation. The need to compute state covariance in a real-time esti-
mator exists only if gain computations are required at update times.

The next section considers implementing a fixed gain filter which elimi-
nates the need either to propagate or to update the state covariance matrix.
If such a simplification is not permissible, this section considers a
technique for at least reducing the burden of integrating ﬁ, provided
that the F matrix is relatively sparse.

The matrix p is formed in terms of the elements of P according to
Eq (2-48). However, since P is symmetric, only (n) (n+1)/2 tarms (in
this case, 55, since P is 10x10) need be integrated. Althougn F is not
symmetric, FP + PFT is symmetric and

PP+ P = Fp + (FP)T (5-1)
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It is convenient to form the expression above as follows: Form FP as
a matrix and add its transpose, (FP)T (which can be accomplished with

ﬂigill sums). Now form an (n) (n+1)/2 length vector of the unique

e et it

elements of this matrix sum. Add the corresponding unique elements of
the symmetric GQGT matrix. The resulting ﬁ vector can now be integrated
using a suitable integration algorithm. The result of this integration
is a P vector whose elements are the unique elements in the symmetric P
matrix. Because F is sparse, however, all terms of F need not be re-
trieved from storage to perform this computation. A1l "zero" elements
in F are flagged and no multiplication using these elements is performed.
Also, all "one" elements are flagged and the corresponding elements of P
are added appropriately, without the unnecessary multiplication by one.
Values of only the non-zero, non-unity elements of F are required. Of

the 100 elements in F, only 13 are non-zero and of these only 7 are non-

unity. The computation of FP, for example, is reduced from 1000 multi-
plies and 900 adds to 70 multiplies and 30 adds. Another alternative,

since F is so sparse, is to simply write out scalar equations.

5.3 Fixed Gain Filter

The update equation for the interactive extended Kalman filter developed

in this research computes measurement update gain by the equation,

R - |
Ke = PH (HPLH

: +R)"! (5-2)

where P; » H and R are defined in Chapter II. The computation of gain
is time-consuming priméri]y because of the m x m matrix inversion where
m, here, is the length of the measurement vector. The following section
discusses eliminating the matrix inversion in exchange for m scalar in-

versions. Another approach, which is frequently used for simplifying
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linear Kalman filter implementations, approximates the variable gain, Kk’
with a fixed gain, K. This approximation is a reasonably good one for the
linear filter, since P~ tends to steady-state as governed by the propa-
gation model time constants, and H is constant. However, when both the
dynamic model and the measurement geometry are non-linear, as in our case,
P; and H are neither constant nor reach steady-state values.

One approach to forming this constant-gain model would be to examine
values of gain K for an ensemble of scenarios, ranges of states and engage-
ment conditions. Such a sensitivity study on K would also examine vari-
ations in P and H over the ensemble. The goal of such an examination
would be to determine the feasibility of modeling K as a piece-wise
constant function (or other simple empirical function) of a small number
of ranges for state values. After the feasibility were established, a
trade-off study would need to be made considering the reduced accuracy
and the need for table look-up procedures inherent in this approach.
Drastic gain variations from scenario to scenario might suggest an
adaptive technique for function evaluation. This is a potential area

for future research.

5.4 Scalar Processing of Measurements

The measurement update equation for the extended Kalman filter de-
veloped in Chapter II uses a gain matrix which is computed by batch
processing all six scalar measurements, i.e., updating both state and
covariance only once with the combined effect of all six measurements,
thus requiring inversion of (HP'HT + R). An alternative approach,

which eliminates the 6x6 matrix inversion, uses the scalar formulation
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of the update equation. Each of the six scalar measurements is processed
individually, so that the matrix inversion is replaced with simple scalar
inversions. In this technique, both state and covariance are updated J

after each scalar measurement, necessitating as many separate updates as

there are measurements, in this case, six. However, this additional

computational burden is offset by the elimination of the matrix inversion,

a time-consuming task.

5.5 Quasi-Static Filter Approximation

The state dynamic equation [Eq (2-2 )] is non-linear in that normal

load acceleration magnitude is modeled by the equation
ay = a + e’ (2-6)

where ¢ is a state and is modeled as a zero-mean, first-order Gaucs-
Markov random process, and ay is in units of g's. [(The factor g in
Eq (2-16) converts ay to ft/sec?.] The direction of normal load accele-
ration is given by the unit vector Tﬁ provided from the aspect angle

filter. As discussed in Section 2.4.1, the change in ¢ and Th is small

enough during the propagation interval to assume them to be constant.
Hence, F [in Eq (2-52)] may be considered piece-wise constant. With
this approximation, the state covariance matrix may be propagated using
the piece-wise constant state transition matrix instead of by integrating

P equation [Eq (2-48)] directly, i.e.,

Pty lt) = oty oty Pltat) o (t,qt,)
(5-3)

b r e
+ t dtk+1 ’T) GQG ] (tk".'] ’T)dT
k
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and
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(5-5)

The advantage of this approach is that the multiplications and the
integrations in Eq (5-3) may be carried out explicitly pricr to imple-

mentation, thus eliminating the need for real-time integration of the




state covariance matrix. The same is true, of course, for propagating
the state equation, i.e., integration of Eq (2-46) is replaced by the

explicit state propagation equation, 1

Xt lt) = byt Xt It,) (5-6)

—

This technique has an advantage over numerical integration only if the
functions represented by & and foaQG ® dT can readily be stored and

utilized.

5.6 Filter Linarization

A linearization technique may be utilized to approximate the pro-
bability density function for a, [Eq (2-7), Fig. 2-4] by a Gaussian pdf
with appropriate mean and variance. The state equations [Eq (2-1),

(2-2), (2-5) and (2-8)1 are replaced with the following linear state

model:
Ptra = Yi/a (6-7)
Yera = 9ay +ay J0y) + 88+ - Voyp + Hyee (5-8)
— i _'|_ —_— — -
Sa = -Taa_a + !63 (5-9)
EN 8 - _LEN + !a (5-]0)
o TaN o N

In this model, —N js zero-mean, colored and Gaussian and aN is a
positive scalar parameter of such a value that the random process

(aN + ay ) approximates, in some sense, the non-linear random process,

102




T

T

3y =oa+Bes ,  €~N(0,1) (5-11)

Fig. 5-2 illustrates the approximating Gaussian pdf for the following

cases:

1) the parameter ay and the variance of ay equal, respectively,
m (o} '
the mean and variance of ays i.e., referring to Appendix C ,

2

Y
ay =at ee—z z 3.47 (5-12)
m
2
°§N = (e’ - &) . 5.835 (5-13)
z .
or
0, = 2.416 (5-14)
N
g

2) aNm is set equal to the mode of ay
PSP ¢
ay = o+geY =z 4.885 (5-15)
m .

and the variance of ay is set to such a value that the density functions
o}

for ay and a, are set to the same value at their modes, i.e.,
o
%i
L = x 0.226 (5-16)
/2r0 /21 v|8|
or
o =~ 1.765 (5-17)

3) Another approach could be used to determine a normal pdf to

approximate the non-Gaussian pdf so as to maximize the area overlap of
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the two pdf's: Convolve the non-Gaussian pdf with a normal pdf whose

mean and variance are treated as parameters. Differentiate the convolved

function with respect to both mean and variance, set to zero, and solve

the two resulting simultaneous equations for mean and variance values.

Case (3) has not been developed further. No sensitivity results from

Monte Carlo simulations have been obtained for any of these approximations.

5.7 Angle Approximations

Several angles are required in the formulation of the interactive
filter system-- n, £, ¥, @, ¢ and ay. Trigonometric functions of
these angles may be approximated, in order to simplify computations for
real-time implementation. One such simplifying technique approximates
the trigonometric functions of these angles by polynomial expansions.

The number of terms in these approximating expansions is determined by
the requirement for accuracy in a given relationship employing the angle,
and by the range of values anticipated for the particular angle. While
¥, & and n have 27 ranges, £ and 6 have ranges of only m radians and o
has a 1imited range of slightly over one-half radian (-5° tg +25¢° ).
Polynomial expansions may have an advantage over table look-up interpo-

lation methods when memory storage is a premium. The expansion is formu-

lated as a succession of alternating multiply and add operations, with

storage required only for polynomial coefficients.




VI. Conclusions and Recommendations For Future Research

For the class of targets considered in this research, target orienta-
tion provides information about current and future target motion beyond
that provided by point-mass observation systems such as radar. This is
true because of the interdependency of orientation and motion for the
vehicles considered. The methodology developed in coupling the electro-
optical and radar sensor subsystems through separate but interactive
Kalman filter esfimation algorithms in order to enhance target prediction
capabilities is a unique contribution to the field of target motion state
estimation.

The particular mechanization of this concept is one in which
1) normal load acceleration magnitude is modeled realistically by a
non-linear function of a time-correlated Gaussian random process,

2) direction of normal load acceleration is provided by offsetting the
Kalman-estimated target attitude by kinematically derived angle of attack
(using the aerodynamic 1ift equation), and 3) the target aspect filter

is provided with measures of target aspect, not only from (simulated)
pattern recognition derivates of electro-optical imagery data, but also
from kinematically derived target aspect, which is based upon estimates
of target velocity, acceleration and angle of attack. This unique system
for dynamic interchange of motion and orientation information serves

not only as a basis for future research in this fruitful area, but also

provides a particular formulation which has the potential for real-time

implementation in a high-performance aircraft.




T

The four air-to-air scenarios investigated in this research are

realistic and typical of engagements encountered in military combat
missions. The high-g, break after roll, and nigh line-of-sight angle

rate maneuvers are generally considered difficult for point-mass track-
ing systems such as radar and non-imaging electro-optical systems.

These scenarios provide a good data base for performance comparisons using
the interactive filter.

The performance analysis demonstrated that the interactive filter
provided better performance than a comparative radar-only filter in
all chosen figures of merit and over all four scenarios. Although it
varied slightly With scenario, a factor of two improvement is realized
for target position prediction error (predicting one second forward in
time) using the interactive filter over the radar-only filter. For the
scenarip in which successive target roll maneuvers and high line-of-sight
angle rates were involved (scenario 4), the interactive filter did signi-
ficantly better than the radar-only filter, recovering from the dramatic
maneuvers in approximately two seconds, compared to more than six seconds
for the comparative filter.

The interactive filter is not highly sensitive to choices for
"target-type" filter parameters o, B and Y. Comparisons of performance
show some improvement, however, when these parameters are selected to
match the trajectory acceleration profile. The particular parameter
choices implemented here kept o and y fixed and varied 8. The pdf
shapes which resulted suggests that varying B alone is sufficient to
provide the shapes needed in the filter model. This, in turn, suggests
a fruitful area for future research. This research area would attempt

to adapt the value of 8 on-line according to the value of normal load
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acceleration magnitude.

The interactive filter recovers quickly from one-time bad measure-
ments and is reasonably insensitive to large unmodeled radar measurement
errors. Performance in the area of recovery and sensitivity to unmodeled
errors is comparable to that of the comparative radar-only filter.

Interactive filter performance deteriorates as electro-optical/
pattern recognition aspect measurement noise is increased. An increase
in measurement noise standard deviation from five degrees to ten degrees
has little effect on performance. An increase to 25 degrees, however,
has a significantly degrading effect. And, if the increased noise vari-
ance is also modeled in the filter measurement noise covariance matrix,
the filter shows signs of instability. If the electro-optical/pattern
recognition aspect measurements are eliminated altogether, the filter
output becomes unstable. A potential area of research would investigate
techniques for stabilizing the filter in the absense of external aspect
measurements.

A five-degree bias added to all three aspect input channels at each
measurement update (but with filter unaware) results in only slight de-
gradation in filter performance. This is a significant result, as most
pattern recognition methods should be able to maintain bias uncertainties
below this level.

The more complex aspect noise model, in which inertial aspect is
converted to the image plane, corrupted with white Gaussian noise, round-
ed to five-degree 1ncrgments, and converted back to inertial reference,
shows little difference in filter performance compared to the simpler

noise model used in the baseline analysis. This result indicates some

insensitivity to aspect noise type. It also gives credence to the table
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look-up technique inherent in several pattern recognition schemes.
Additional areas for future study can be recommended as a result of
this research. Probably the largest and most fruitful, is the area of
applying specific pattern recognition techniques to electro-optical
imagery data in order to extract or derive target aspect. An important

concern in this area is the development of good models for aspect noise

corruptions for particular pattern recognition techniques. Other potential

areas include: on-line applicability in which computational efficiency
and storage requirements will be important concerns for real-time imple-
mentations; better radar noise models; other implementations for inte-
grating e]ectro-dptical and radar sensor systems; a comparison of the
linearized offset-Gaussian dynamic model with the non-linear model in-
vestigated here; the investigation of an interactive system in which both
motion and orientation data are provided by an imaging electro-optical
sensor, such as the one currently being developed by the AF Avionics
Laboratory; application of this technique to other types of problems
including (1) ground-site tracking of a cooperative (instrumented test)
aircraft in which attitude is being telemetered to the grouﬁd tracking

site, (2) ground-site tracking of an uncooperative target, and (3)

electro-optical tracking of missiles.
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Fig. A-41. Scenario 2, Average Error in Predicted Target Position,
Interactive Filter
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Fig. A-42. Scenario 2, Average Error in Predicted Target Position,
Comparative Filter
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Fig. A-44. Scenario 2, Average Error in Predicted Cross-Range
Target Position, Comparative Filter
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Fig. A-46. Scenario 2, Average CEP, Comparative Filter
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Fig. A-51, Scenario 3, Average CEP, Interactive Filter
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Fig. A-53. Scenario 4, Average Error in Predicted Target Position,
Interactive Filter
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Fig. A-54. Scenario 4, Average Error in Predicted Target Position,
Comparative Filter
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Fig. A-56. Scenario 4, Average Error in Predicted Cross-Range
Target Position, Comparative Filter

157




120.00
o
—a

100.00
re

$0.00
i ik

e

AVERNGE CROSS-RANGE CEP (FEET!

20. 00
ry

-y v v
1.80 .00 3.00

500
8

.00 5.00 .00 7.00 .00 .00  10.20
TINE (SEC)
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..

40.9%0

iy

AVERAGE CROSS-RANGE CtP (FEET)

10. 68

.00
8

:
*

v v v v v ~
1.00 2.00 8.00 2.0 e.00 .00 10.08

4,00 5.00
TINE (SEC!

Fig. A-58. Scenario 4, Average CEP, Comparative Filter

154




APPENDIX B

Coordinate Transformations

This appendix contains details of coordinate transformations used
to formulate the interactive filter:

B-1. Inertial to body (Euler angles)

B-2. Tracker base to tracker line-of-sight

B-3. Tracker line-of-sight to image plane

B-4. Image plane to target body

B-5. Tracker base to target body

B-1. Inertial to Body (Euler Angles)

The inertial right-handed coordinate frame is oriented as:

xI - north
yI - east
zI - down

The aircraft body right-handed coordinate frame is oriented as:

b

X~ = out nose
yb - out right wing
zb - down through aircraft underside

The following specific set of Euler angles is determined as those rota-
tions required to re-orient the aircraft from the inertial frame orienta-
tion to the current body frame orientation. Angular rotations are made
in the order yaw, pitch and roll. Zero yaw, pitch and roll correspond
to the aircraft oriented toward the north, right wing toward the east
and aircraft underside down.

¥, yaw

Yaw is rotation about the zI

axis, positive about zI in the




3 " S b g

right-hand sense, i.e., positive clockwise looking down the +zI

axis.
XI Xl
nort!
zI,zl yI east
)1
X} Cosp  Simp 0 |x! I
oalosim  cosv of |yt] = 1 (B-1-1)
b4 0 0 1 zI zI

where T{ = transformation from frame I to frame 1.
8, Pitch

Pitch is rotation about the newly created y] axis. Positive pitch

is a clockwise (CW) rotation about the +y] axis.

x2
)
x] y1‘y2
horizontal
z2 z1
down
x2 Cosé6 0 -Sine x1 x‘
¥l = o 1 0 yl| = T; y! (B-1-2)
z2 Sine 0 Cose z] !
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¢, Roll

Roll is rotation about the newly created x2 axis. Positive roll is

2

a CW rotation about the +x~ axis.

longitudinal axis

of bogy ;
b
X7 4X y
$
y
right wing
of body
underside
of body
z z2
xb 1 0 0 x2 x2
Yl =1o cossp  sing| [P [ = T2 |y (B-1-3)
zb 0 -Sin¢ Cosé 22 z2

Combining in the proper order;, the overall transformation from

inertial coordinates to body coordinates is given by:

Xb [ XI XI
Pl o=2ud 1y -1 |y (B-1-4)
b I I
z Lz z
where
cocy cosy 50
Ty = | S0SeCV-COSY  SeSesweCoCH  SOCO (B-1-5)

CHSOCY+SoSY CoSOSY-Secy CoCo
and C and S denote cosine and sine respectively.

B-2. Tracker Base to Tracker Line-of-sight

The transformation between the inertially stabilized tracker base (tb)
frame and the cartesian tracker line-of-sight (t1) frame is determined by
the measured azimuth and elevation angles, n and £ respectively. The two

tracker frames are aligned whenever £ =n= 0. yt1 is always kept aligned




with the elevation pivot axis of the tracker, i.e., in the horizontal

plane and perpendicular to xt].

ct
o

North)

~

~
~y
~~ X

AP, [P

ytb (East) * 2tb (Down)

Fig. B-1. Tracker Line-of-Sight Geometry

n, Azimuth
Azimuth is rotation about the ztb axis. Positive azimuth is a CW
rotation about the +ztb axis.
xtb x]
north #n
ztb‘z1 ytb
1
y
east
x! Cosn - Simn 0 e >
y'[ = |-sim  cosn 0| |y = TP ]yth (B-2-1)
1

tb tb




T B s o g

£, Elevation

Elevation is rotation about the newly formed y] axis. Positive
1

elevation is CW about the +y axis.
xt] Cosé 0 -Sin§ x] x1
W= o 1 0 L g ¥ (B-2-2)
2t Sing 0 CosE z! 2!

The overall transformation from inertially stabilized tracker base

to tracker line-of-sight is given by:

xtl xtb _xtb
tl 1
zt] ztb ztb
where

C&Cn CESn -Sg
T§$ = | -sn Cn 0 (B-2-4)

S&Cn SESn ce

B-3. Tracker Line-of-sight to Image Plane

The image plane geometry is shown in Fig. B-2, where superscript i

denotes image plane.

Kb =yt
yi= gt (B-3-1)
2! - xt!
Xi )(.ﬂ
R N (B-3-2)
" Lt
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where

0o 1 o0 |
11?‘ SRR e e (B-3-3)
O T

as seen
from tracker

Tracker

Fig. B-2. Image Plane Geometry

B-4. Image Plane to Target Body

The target imagery is provided to the pattern recognition subsystem
for aspect determination. The specification of aspect will be expressed
as Euler angles with respect to the image plane. The transformation

between the image plane (i) and the target body (t) is the same as
i developed in B-1, except that the angles will be called image yaw, image
pitch and image roll. .Zero image yaw, image pitch and image roll will
occur when the target aircraft frame is aligned with the image frame,

A i.e., the target nose is to the right, the right wing is up and air-

craft underside is the image view. Use the same convention for positive

160




angular rotations and make the following definitions:
7 image yaw - rotation about +zi
G image pitch - rotation about the newly formed lateral axis,
positive out right wing, using right-hand rule.

55 image roll - rotation about the newly formed longitudinal axis,

positive out the nose.

The transformation between image plane and target body is given by:

xt X1
vt = Tz y! (B-4-1)
Zt Z.i
where
Co,Cu, Co,Sv, -se,
T = 56,50,Cu;-Co,S0;  S6,50.50,4Co.Ch;  So.C, (B-4-2)
Co;S0,Ch +S0;50;  C6;50.50,-56,C0;  Co,Co,

B-5. Tracker Base to Target Body

The transformations developed in B-2, B-3 and B-4 can be combined
to form the overall transformation from the inertially stabi]ized tracker
base to the target body. Once this transformation is obtained, the
inertially referenced Euler angles can be found directly by comparing

the terms with those of the transformation obtained in B-1.

th _ o1 qt] otb -
® Te 75 Ty (B-5-1)
th t] i

where Ttl' T1 s and Tt are developed in B-2, B-3 and B-4 respectively.
The transformation_from inertial to body is available from B-1.
Since the tracker base is assumed to be inertially stabilized and oriented,

and the body, in this case, is the target, the transformations can be

equated.




1 - rtba hs,) (B-5-2)

The Euler angles can be obtained from this matrix equation as described
below. The Euler angles are restricted as follows to achieve unique
angles.

=% < Y < 7

-W2< 8 < T2 (B-5-3)

=T < ¢ < 7w

Pitch may be obtained by equating the 1-3 elements.

-Sine = ty, (B-5-4)
6 = -arcsin t,, (B-5-5)
Yaw can be found by taking the ratio of the 1-2 and 1-1 elements.
CoseSiny _ ‘12
CoseCosy ‘b1l (B-5-6)
Y12
¥ = arctan (=== (B-5-7)

th

Finally, roll is obtained by taking the ratio of the 2-3 and 3-3 elements.

SingCosd - 3 .
Cos¢Cosb t (B-5-8)
33
3
¢ = arctan (1;- (B-5-9)
33

If the arctangent algorithm used to obtain ¢y and ¢ cannot distinguish
a (i) ratio from a (;)'ratio, the following scheme may instead be used

to find y and ¢ . Since -n/2<0<m/2, sign (Cos8) is +. Therefore,

sign(Sin y) = sign (t12) ' (B-5-10)




sign(Cos ¥) = sign (t1]) (B-5-11)
sign(Sin ¢)

sign (ty5) (B-5-12)
sign(Cos ¢) = sign (t33) (B-5-13)

Assuming sign [Sin(0.0)] and sign [Cos(0.0)] is +, the unique values of

Vv and ¢ satisfy the following table where 6§ is either ¥ or ¢.

Table B-I. Angles and Corresponding Trigonometric Functions

sign(Sing)+ sign(Sing)-
sign(Coss)+ 0<8<m/2 -m/2<8<0
sign(Coss)- T/2<8<m ~m<<n




APPENDIX C

Statistical Characteristics of Modeled
Normal Load Acceleration Magnitude
This appendix derives the probability density function (pdf), mean,
variance, mode and autocorrelation function for the magnitude of normal

load acceleration based upon the non-linear relation
= o + BeYE (C'])

where o, B and y are target dependent pdf-shaping parameters, and

€ 1is a zero-mean, unit-variance, Gaussian random variable. Later
consideration is expanded to let € be a first-order Gauss-Markov
process. Throughout this appendix, the letter "a" is used for “QN".
Yy is a positive parameter, and the trivial case of B=0 is not considered.
The underbar (_) represents a random variable or random process.

Probability Density Function (First-order pdf)

The cumulative distribution function (CDF) for a is given by
P,(a) = Pra<al = Pro+Be'=ca]l = P[Beyssg-a] (C-2)

820

s ve 8=0. . 120
gg(a) = Pe’=55E P[gsyln( 5 )3

1, ,a-0
=~In(=%7)
u

, a<a

(C-3)
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: Differentiating the CDF, the pdf is given by

| = 2
i Y(a-a) exp {-!5[-1n(a a)] }, aa
Pala) = (c-a)
| = 0 » asa
8<0
Pa(a) = PLe"%22 7 - p e, lin(20);
=1- P[e<;4n( 243
] (C-5)
a-o 2
’1-‘7]"(T)exp(%‘—)dl s a<a
s 050
Again, differentiating the CDF, the pdf is given by
—E;T)- exp {-% [lln(a—;-’-)lz} s a<a
p,(a) = /Z2mYia-a Y (C-6)
a -
Combining these two cases for B, the final result follows:
1 ¥
T Taa] e -15[—1n( a-ay 14 ,aT" >0 i
pyla) = a-a :
= 0 B <0

Mean

The mean of a = o+ ge'S for the general case of € normal with mean

: me and variance o * , i.e., € ~N(mg,0.?), is given by :




Elal = o+ BE[eYE

Using the moment generating function

ﬂ!(u) = Efe')]
and if y~N(u,0%), it is known that
u
NOR T

Thus

. YZO 2
E[a] = o +BM_(Y) = o +8 exp(m v+ ~5E-)

For the case under congideration, namely, €~N(0, 1),

Y
Elal = o +Be 2

Variance

The variance of a = a + e'S where E?N(m€'°ez) is given by

var(a) = E{[a - E(a)]?} E(a?) - E2(a)
E(a?) = o + 2aBE[e"E] + g2E[e2"E]
= o + 20peMeY ¥ 5T g2 e H20EY’

From the previous section,

a y?

G z.Yz
Y+'§f__ Bzez(meY+_§§__)

m
E2(a) = o?+20Be £ +

Hence,

' 2.2 2.2
var(a) = gz(ezae Y wg”t Y )ezmeY

(c-8)

(c-9)

(c-10)

(c-11)

(C-12)

(C-13)

(C-14)

(C-15)

(C-16)




which, for &~N(0, 1), becomes

A Ml s L S S ki

var(a) = 82(e2Y -e¥) (c-17)

Mode

The mode (or peak) value for a is found by determining the value
of a at which the pdf has a zero slope. Differentiating the expression

for the pdf of a and setting to zero yields the equation

;‘, &) +1 =0 (c-18)

The mode value for a is the solution to this equation and is given by

-‘Yz
The peak value of the pdf is evaluated at ay and is given by
2
e ]%’
Palay) = 27 y|g| R

Autocorrelation Function

The autocorrelation function for the random process a = a+ ge'S
depends upon the autocorrelation function for the random process € .

The dynamics of € are governed by the equation

5 §
Te

.
£ = -

e+ W (c-21)




where !e is a zero-mean, white, Gaussian noise process such that
EW, (t+)W_(t)] = q(t)s(7) (c-22)

If E[e*(t )] 1is assumed known to be of  for some initial time ty

t
then for some later time t, .
t
ofe = ¢ (t,ty)ol +s ¢ (t,t)q(t)dr (c-23)
t t t
o 0
where
&(t'to) = &(t-to) = e'('t‘to)/Te (c-24)

Assuming that q is not time-varying, this equation can be integrated to

yield

OZEt = e‘(t-to)/"sl:o;t _Q%E_J.q-J;L (c-25)
(o]

Ifo;: is chosen to be 9%2 » then the variance of ¢ is not time-varying.
0

If, in addition, q is set to 2/7¢, €(t)~N(0, 1) ¥t. Under these conditions,

the autocorrelation of €, where e.N(0, 1), becomes

= . = 2 = -(t2°t])/T 2
R.(ty,t;) E[Etzgt]] °(t2’t1)E[§t]J e € oet]

(c-26)

e-(tz-tj)/re




Since ¢ is not time-varying under these conditions,
t

Rs(tZ’t]) = Re(tZ't]) = RE(T) = Re('T) (C-27)

where 1 = tz-t]

so R (1) = elTl/Te (C-28)

Now, under the assumption that e-N(0, 1), the autocorrelation for a

is determined:

Raltysty) = E[Qtz §t1]
* E{[a+BeY§t2][a +3eY§t1]}
= a2+2aBeY2/2 +32E[eY(Et2+Et'I )] (C-29)
Define
Htpety) = L, * &t (c-30)

Now, &, and € are each zero-mean, normal with unit variance.
2

1
g(tz,t]) is known to be normal since g and Et] are jointly normal.
2

Hence, the mean and variance of Z}tz,t]) completely define its statistics.

m, = E[ Etz + Et]] = 0 ' (c-31)
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0
var(Z) = E{[Z(t,.ty) - )V% ¥3

Bl e 42¢. ¢ + €% ] (c-32)
= Y Y

2(1+e'lTI/T€)

where T = tz-t]

and € are the
—t 4

same), var(Z) = 4 since Z = 2e. On the other hand, if t, - t, is very

Note that for t2 = t] (perfect correlation, since €

large, then var~(g):o§ + cé = 2. This is also reasonable since little
t t
2 1

correlation exists between ¢, and g, for t, - t, iarge.

ty Y

Since Z depends only on time difference T and not on times t, and t,,

define

(1) = Zt,ty) (C-33)
where 1 = t2 - t]

Now,

Y€, 5. ] (1)
Boe c Ty w mae

erZ(T)i- 02 (1)172 (c-34)

y2(1+e'|T|/Te)
L -

Eq (C-29) now becomes
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2
L ||
2 -ltlyTe
Ra(T) pe- u2+ ZaBeT + BzeY (]""'e )
noting that R, depends only on T, not on t, and t,. Ra(T) can be

written in the form

T
R, (1) = C; +Cyexpl C4exp(- l;é )]

where X,;.
C1 = a2 + 2aBe
2
C2 = p2eY
C; = y?

Note that for small values of C3 (1ess than approximately 0.25),
exp [C3 exp(- lll)] T 1 + Chexp(- lll)
Te 3 Te
Hence, for this condition,

Ry(T) ~ € + Cy(1scqe”ITI/ %)

. -lel/x
Ry(1) = ¢, + Cee €

where

C

. 2 2
4 )+ C, = a2+2ape” / 2+f32eY

2

BzYzeY

C5 = C,C
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(C-35)

(C-36)

(c-37)
(C-38)
(C-39)

(C-40)

(C-a1)
(C-42)

(C-43)

(C-44)
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The following example illustrates the similarity in the characteristics
of the autocorrelation functions for normal load acceleration magni tude

and the zero-mean state variable, €.

Example

a= 8, B = -4, ¥ = 6.5

(c-45)

T ] U q = 2
Exact solution: (Eq C-36)

R, (1) = -8.522 + 20.544 exp [0.25 exp (-||)3 (c-46)
Approximate solution: (Eq C-42)

R (1) =12.023 + 5.136 exp (-|1]) (C-47)

These functions are plotted in Fig. C-1 along with the autocorrelation

for €.
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APPENDIX D

Kinematically Derived Target Aspect

Yaw and Pitch From Roll Axis Definition

This section of Appendix D determines the corresponding values of
aircraft yaw and pitch assuming the roll axis is defined by the inertial
velocity vector (assumes angle of attack is zero). The aircraft velocity

vector in inertial coordinates is given by:

x { §
Vi v (9-1) P

¥

VZ

Define a unit vector in the velocity direction as:

vx
P
vz
where
= (v 2 2\% (D-3)
v (Vx + V.y + Vz)

The projection into the x-y (horizontal) plane of this unit vector is

simply

|

r

=

o <}<<

S

Yaw is the angle between this projection and the x axis. Hence, by the

dot product rule,
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[ v v v v
[1 0 0] VL! = vé'=[(7592 + (Vx-)zlli cos ¢
4 (D-4)
o
v
| 0
v
§ = arccos % (D-5)

2 2.%
(V) + (V)]
Pitch is the elevation of the total velocity vector above the x-y

plane. Recalling that inertial z is down,

Y,

-V sin 6 (D-6)
(D-7)

8 = -arcsin (VE)

Euler Angles from Target Kinematics

This section of Appendix D develops aircraft attitude from total
velocity, total acceleration ard the relationship between angle of
attack, normal load acceleration and airspeed.

First, load acceleration is defined as acceleration minus gravity,

o W . G 4
where

SN U :

a1 = aetVesr) e

and E.is in the inertial z direction, with magnitude approximately 32.17

ft/sec2

at sea level. Coordinated flight is assumed (no lateral com-
ponent of velocity) and normal load acceleration is formed by removing
from the Toad acceleration any component of load acceleration along

the velocity vector,




~ - t/1 4\ T (D-10)
ay =3 - “1‘7 — | V¢s1

The transformation from inertial to body axes, required in order
to obtain Euler angles, is given by

. oVl VT (D-11)
Ty = Ty T = Telhy)

First, T¥ is obtajned. Velocity is along the x axis, normal load

V axis and y¥ completes the right-

acceleration is along the negative z
hand frame. For brevity, let the components of Vk/l be denoted as

Vx’ Vy, and Vz.

Hence, _ 3
~a
V_x t _Nx
v 12 ay
v !x -aNz (D-12)
By %1y t2 2y
-a
!E - ___NZ
% 2 L

Since the second column of T¥ is to be perpendicular to both Vk/l
and 3&, the direction of this column vector is along the cross-product
of_\l_,,/I and'ZN. Using the skew-symmetric matrix form of the cross-

product rule,

- b r - - ﬂ

1
[+
=
x

o
ol

-V
Z
0 v

1
o
=

(D-13)

<4xl: <t<
z“'L

' <| <
<L<< lN
<| <

[
o
1
o o
=
N

i
B

i : 176 ‘?




1
t S S Via, - V. a (D-14)
22 VaN z Nx X NZ

The velocity frame must now be rotated through the angle of

attack to form the body frame as illustrated in Figure D-1.

b
3 y.yP _—zero angle-of-
iy attack flight
a
xV = 2
<. \\\-highly accele~
rated flight
Fig. D-1. Angle-of-Attack Geometry
Cos o 0 -sin g
T; = 0 1 0 (D-15)
sin a 0 cos a

(An expression for angle of attack will be developed later in this

section relating it to load factor and airspeed.) Combining the two

transformations,
1 _ qv <l D-16
To = 75 T, . | (D-16)
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fipes B % e Ca 2y So
=+ ) =) G+ 2
'B a v ay v ay
Va -Va Via, -Va Va, -Va
TI & y Nz z Ny) ( z Nx X Nz) ( X Ny y Nx)
b VaN VaN VaN
a, Co a,, Co a, Ca
(VxSa ) Nx ) (V Sa 3 ﬂy ) (VZSa 2 Nz )
v ay '] ay v ay

Where C and S represent cosine and sine, respectively. From Appendix B,

Té is known to be

(D-17)

ceCy Ccosy -S6
I
T, = | S¢SaCy-C¢S S$SeSy+CoC Ce
b $S58Cy-CoSy $S6Sy+CoCy S¢ (D-18)
CoSOCY+S¢Sy CoSaSy-SeCy C¢Co
Hence, solving for y, 6 and ¢ by equating terms,
aN Sa aN Sa
& Y Yy X X (D-19)
p = arctan [(f— + a M (5—+ a )1
Vea 3 Se
P : z z D-20
6 = -arscin (— + 2 ) (D-20)
Va, -Va a, Ca
X N YN
- Y X R o (D-21)
¢ = arctan [( Ta )/(—V et
N N
Angle of attack can be related to load factor and airspeed
through the aerodynamic 1ift equation,
M= L = pvPe S = oV e, (a-0t,)S (D-22)
[0




n = load factor (g's)

W = weight (1bs; assume sea level gravity)
L = 1ift force (1bs = slug ft/sec?)

p = air density (slugs/ft3)

V = airspeed (ft/sec)

C, = coefficient of 1ift (dimensionless)

C

i coefficient of 1ift for o (dimensionless)

a
a = angle of attack (radians)
@, = angle of attack for zero 1ift (radians)
S = effective airfoil surface area (ftL)

This equation brovides a good model of o and lToad factor over the full

flying range of the airfoil. The coefficient CL is fairly constant

to within a few degrees of airfoil stall. .
Solving for a - Gy
a-a," K(%f) (D-23)
where
K = pwaS ' (D-24)
()

o, is assumed zero for symmetrical airfoils such as the F-4 and is
only a few degrees for other modern fighter aircraft without symmetrical

airfoils.

Example.
The following example illustrates the use of this procedure to

obtain target aircraft attitude from target velocity and acceleration.

The data is from a typical FASTAC simulator scenario at approximately

20,000 feet altitude. The usual north-east-down inertial system is used.




p = 21.46°
o = -8.32°
¢ = -107.28°

3{ = [130.61 -138.33 65.95]

e a
4511———-% = 0.00754

130.61

= 1-138.33| - (0.00754)

ay
65.95

ag/p = [130.61 -138.33 98.12] ft/sec?

available from the simulator, are given as

Following the procedure outlined earlier,

563.95
510.25
19.58

|ay| = 201.28 ft/sec” = 6.26 g's

o -

Vx/V 0.741

4

v /v 0.026
g = | J

Assume a, = 0

v /V = | 0.671 s

180

a, /a
Nx N

a, /a
Ny N

a, /a
A Nz NJ

126.36
-142.18
65.80

0.628 |
-0.706

0.327

t/1 = [563.95 510.25 19.58] ft/sec, V = IV;/I|= 760.77 ft/sec (D-25)

(D-26)

Also for comparison, the actual values of target attitude Euler angles,

(D-27)

(D-28)

(D-29)

(D-30)

(D-31)

(D-32)

e AR il S e




Q= K(%z), where n = Iahl = 6.26 g's (D-33)

A good approximation for p for altitudes up to 35,000 feet [30 ] is

b = 0.002378 [1 - 6.879 x 10"%h]*258 §1ugs/ft3 (D-34)

where h is in feet.

h = 20,000 feet
o = (0.002378)(0.532) = 0.00127 slugs/ft>
c, = 3.4

a 2
S = 530 ft
W = 1210 slugs x 32.17 ft/sec’ = 38,925.7 1bs

2
& ZNS - 34,018 (rad(fg )
oC sec
[s 3
afrad) = 34,018 [—2:28 5 = 0,368 rad = 21.1° (D-35)
(760.77)

Substituting equations D-25, D-30, D-31, D-35into equations D-19, D-20,

D-21, the deduced target aircraft Euler angles are computed to be

» 0.372y _ 0
¥ = arctan (0'917 22.08
o = -arcsin (0.142) = -8.16° (D-36)
¢ = arctan (E%L%%% = -107.33°

Comparison of equations D-27 to equations D-36 demonstrates the
feasibility of this technique for deducing approximate aircraft
attitude from kinematic observations.

The methods of the two sections are compared in Table D-I for
this particular example. The superiority of the second method is

clearly evident.
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Table D-I.

Aspect Angle Determination, Example

True Method Without Method Using
Angle of Attack Angle of Attack
Yaw 21.46 42.14 22.08
Pitch -8.32 -1.47 -8.16
Ro11 -107.28 (not computed in -107.33

this method)




APPENDIX E

Pre-Tuning and Tuned Filter Parameters

Table E-I. Kinematic Initial State Covariance, P

(0]
Kinematic Initial State Covariance, Po ]
Element State Value Represents(1c)
P ' p, .} 100 10 f E
n t/a eet
P Wy 100 10 f
P s 100 10 f
33 t/a, 0 feet
Pag vt/ai 100 10 ft/sec
I
P55 Vt/ae 100 10 ft/sec
I
Pe6 Ve/a, 100 10 ft/sec
P77 Gan 4096 2 g
Pag sa, 4096 2 g ;
Pag 624 4096 2 g |
P10,10 € 1 1 |
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Table E-II. Kinematic Modeling Covariance, Q

Kinematic Modeling Covariance, Q

Element Derivative Pre-Tuning and Tuned Value

Gy v, ’ aI 1024
n

Q bt 1024
22 t/a,

. I 2

Q33 Vi/a : 1024

Qg éan 256

Qg Zsae 256

Qe &ad 256

Q7 € 2
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Table E-III. Kinematic Measurement Covariance, R

*Kinematic Measurement Covariance, R
Element Measurement Value Represents (1c)
| Ry Range, r 2500 50 feet

R22 ; Azimuth, n .000004 2 miltiradians(mrad)

Rys Elevation, £ .000004 2 mrad ‘

Rya Range Rate, r 2500 50 ft/sec :
k

Ree Azimuth Rate, n .000016 4 mrad/sec

Reg Elevation Rate, £ .000016 4 mrad/sec ;

* o® for each measurement is the same as the corresponding element of the
R matrix, i.e., no mismatching of actual noises and filter's noise

model, for the baseline filter configuration.
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Table E-IV.

Aspect Initial State Covariance, P

%

Aspect Initial State Covariance, P

L)
Element State Value Represents (10)
Pan ] 16 4 degrees
Pasy ] 16 4 degrees
Pa33 ¢ 16 4 degrees
Paga ¥ 100 10 deg/sec
Pagg 8 100 10 deg/sec
Page b 100 10 deg/sec
Table E-V. Aspect Modeling Covariance, Q

a

Aspect Modeling Covariance, Q

a

Element Derivative
Qayy [}
Qaz, o
Qa3 ¢

Pre-Tuning Value
(deg?/sec?)

100

100

100

Tuned Value
(deg?/sec?)
225
225

225
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Table E-VI. Aspect Measurement Covariance, R,

% *Aspect Measurement Covariance, Ry

% Element Measurement Pre-Tuning And Represents (10)

! Tuned Value
Ran V(PR) 25 5 degrees

1 Rago - o(PR) 25 5 degrees
Rass ¢(PR) 25 5 degrees
Rasq ¥(Kine) 100 10 degrees
Rass 8(Kine) 100 10 degrees

3

9 Ragg. #(Kine) 100 10 degrees

*, * g2 for each actual E-0/pattern recognition measurement is set to the
corresponding value of R, elements (1,1), (2,2) and (3,3). The re-
maining diagonal elements of R, represent an a priori estimate of

uncertainty in kinematically derived target yaw, pitch and roll.




Table E-VII.

Remaining Filter Parameters, Interactive Filter

Parameter Description Value
a Normal accel. parameter 8
B Normal accel. parameter -4
¥ Normal accel. parameter 0.5
T TesTyg Non-normal accel. time 1.0 sec
constants (north, east (Pre-Tuning)
down directions) 4.0 sec
(Tuned)

188




Table E-VIII. Radar Initial State Covariance, Po

Radar Initial State Covariance, Po
Element State Value Represents (10)
i
P]] Pt/an 100 10 feet
I
P22 Pt/ae 100 10 feet
I
P33 Pt/ad 100 10 feet
P I 100 10 ft/sec
44 vt/an
I
P55 Vt/ae 100 10 ft/sec
P I 100 10 ft/sec
66 vt/ad
P 1 4096 2 g
] 77 3¢ /an
| I
P88 at/ae 4096 2 g
I
ng at/ad 4096 2 g
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Table E-IX. Radar Modeling Covariance, Q

Radar Modeling Covariance, Q

Element

Derivative Pre-Tuning

and Tuned Values

a, , I
at/an
a, .1
at/ae

[
at/ad

4096

4096

4096

Table E-X.

Remaining Filter Parameters, Radar Filter

Parameter

Pre-Tuning
Description Value

Tuned Value

Relative accel. 1.0 sec
time constant
(north component)

Relative accel. 1.0 sec
time constant
(east component)

Relative accel. 1.0 sec
time constnat
(down component)

4.0 sec

4.0 sec

4.0 sec
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